Skip to content

itemevolutionnet/ItemEvolutionNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

Deep Time-Aware Item Evolution Network for Click-Through Rate Prediction

CIKM 2020 Anonymous Submission #563.

Introduction

Pipeline:

  1. Prepare Data
  2. Train Model

Running

We test our code on Python 2.7 and Tensorflow 1.4.

1. Prepare Data

mkdir -p dataset/Amazon_Clothing_Shoes_and_Jewelry/
cd dataset/Amazon_Clothing_Shoes_and_Jewelry/
wget -c http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/reviews_Clothing_Shoes_and_Jewelry_5.json.gz
gzip -d reviews_Clothing_Shoes_and_Jewelry_5.json.gz
wget -c http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/meta_Clothing_Shoes_and_Jewelry.json.gz
gzip -d meta_Clothing_Shoes_and_Jewelry.json.gz

cd ../..
python script/TIEN/prepare_data/process_data_user_sort_by_time.py
python script/TIEN/prepare_data/local_aggretor_by_time.py
python script/TIEN/prepare_data/generate_voc.py

When you see the files below, you can do the next work.

item-info
reviews-info
jointed-new-by-time
local_all_sample_by_time
local_train_by_time
local_test_by_time
uid_voc.pkl
mid_voc.pkl
cat_voc.pkl

1. Train

We introduce a novel TIEN method in our paper (Fig. 1). We have implemented multiple CTR prediction methods in our code (option --model).

python script/TIEN/train.py --model SVDPP[DNN,PNN,GRU4REC,ATRANK,CASER,UBGRUA,DIEN] --dataset Amazon_Clothing_Shoes_and_Jewelry

For dual behavior model, the truncation length of item behaviors can be changed (option --iblen).

python script/TIEN/train.py --model TIEN[TopoLSTM,DIB,IBGRUA] --dataset Amazon_Clothing_Shoes_and_Jewelry --iblen 5[10,20,30,40,50]

We also design ablation experiments to study how each component in TIEN contributes to the final performance.

python script/TIEN/train.py --model TIEN_sumagg[TIEN_timeatt,TIEN_robust,TIEN_timeaware] --dataset Amazon_Clothing_Shoes_and_Jewelry

To verify the utility of evolutionary item dynamics proposed by TIEN, we select several models using user behaviors as base models, including GRU4Rc, ATRANK, CASER, and DIEN.

python script/TIEN/train.py --model GRU4REC_TIEN[ATRANK_TIEN,ATRANK_TIEN,DIEN_TIEN] --dataset Amazon_Clothing_Shoes_and_Jewelry

Finally, we study the parameter sensitivity of TIEN (option --hidden_units, -embedding).

python script/TIEN/train.py --model TIEN --dataset Amazon_Clothing_Shoes_and_Jewelry --hidden_units 1024,512,256,128,1
python script/TIEN/train.py --model TIEN --dataset Amazon_Clothing_Shoes_and_Jewelry --embedding 128

Acknowledgement

We build our code based on DIEN. We'd like to thank their contribution to the research on the CTR prediction task.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages