Code for an implementation of Learning Parameterized Task Structure for Generalization to Unseen Entities published at AAAI 2022.
arxiv. project website. video intro.
conda create -n psgi python=3.8
cd <PSGI directory>
pip install -e .Run the following commands to run the experiments with one of the following environments: cooking, ETmining, or ai2thor.
Random
bash script/run_rl_baselines.sh --algorithm=random --env_id=cooking --graph_param=eval --seed 1HRL
bash script/run_hrl.sh --env_id=cooking --graph_param=eval --seed 1MSGI plus
bash script/run_msgi_plus.sh --env_id=cooking --graph_param=eval --seed 1PSGI (no prior graph)
bash script/run_np_psgi.sh --env_id=cooking --graph_param=eval --seed 1PSGI
bash script/meta_train_psgi.sh --env_id=cooking --graph_param=train --seed 1 --exp_id 1 # train and save psgi graphs
bash script/meta_eval_psgi.sh --env_id=cooking --graph_param=eval --seed 1 --exp_id 1 --load_exp_id 1 # eval and load psgi graphs from train@inproceedings{liu2022learning,
title={Learning Parameterized Task Structure for Generalization to Unseen Entities},
author={Liu, Anthony and Sohn, Sungryull and Qazwini, Mahdi and Lee, Honglak},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={36},
number={7},
pages={7534--7541},
year={2022}
}