Skip to content

UCSC-IDTAP/Python-API

Repository files navigation

IDTAP Python API

PyPI version Documentation Status Python 3.10+ License: MIT

Python client library for IDTAP (Interactive Digital Transcription and Analysis Platform) - a web-based research platform developed at UC Santa Cruz for transcribing, analyzing, and archiving Hindustani (North Indian classical) music recordings using trajectory-based notation designed specifically for oral melodic traditions.

About IDTAP

IDTAP represents a paradigm shift in musical transcription and analysis. Rather than forcing oral traditions into Western notational frameworks, it uses trajectories as the fundamental musical unit—archetypal paths between pitches that capture the continuous melodic movement central to Hindustani music.

Key Innovation: Instead of discrete notes, IDTAP models music through:

  • Trajectory-based notation - Continuous pitch contours rather than fixed notes
  • Microtonal precision - Cent-based tuning with flexible raga systems
  • Idiomatic articulations - Performance techniques specific to each instrument
  • Hierarchical segmentation - Phrases, sections, and formal structures

Features

  • Trajectory-Based Data Access - Load and analyze transcriptions using the trajectory notation system
  • Hindustani Music Analysis - Work with raga-aware transcriptions and microtonal pitch data
  • Audio Download - Retrieve associated audio recordings in multiple formats
  • Secure Authentication - OAuth integration with encrypted token storage

Installation

pip install idtap-api

Optional Dependencies

For enhanced Linux keyring support:

pip install idtap-api[linux]

For development:

pip install idtap-api[dev]

Quick Start

Authentication & Basic Usage

from idtap_api import SwaraClient, Piece, Instrument

# Initialize client - connects to swara.studio platform
client = SwaraClient()  # Automatic OAuth via Google

# Browse available transcriptions
transcriptions = client.get_viewable_transcriptions()
print(f"Found {len(transcriptions)} transcriptions")

# Load a Hindustani music transcription
piece_data = client.get_piece("transcription-id")
piece = Piece.from_json(piece_data)

print(f"Transcription: {piece.title}")
print(f"Raga: {piece.raga.name if piece.raga else 'Unknown'}")
print(f"Instrument: {piece.instrumentation}")
print(f"Trajectories: {sum(len(p.trajectories) for p in piece.phrases)}")

Working with Trajectory-Based Transcriptions

# Analyze trajectory-based musical structure
for phrase in piece.phrases:
    print(f"Phrase {phrase.phrase_number}: {len(phrase.trajectories)} trajectories")
    
    # Examine individual trajectories (fundamental units of IDTAP)
    for traj in phrase.trajectories:
        if traj.pitch_array:
            # Each trajectory contains continuous pitch movement
            start_pitch = traj.pitch_array[0].pitch_number
            end_pitch = traj.pitch_array[-1].pitch_number
            print(f"  Trajectory {traj.traj_number}: {start_pitch:.2f} → {end_pitch:.2f}")
            
            # Check for articulations (performance techniques)
            if traj.articulation:
                techniques = [art.stroke for art in traj.articulation if art.stroke]
                print(f"    Articulations: {', '.join(techniques)}")

# Raga analysis (theoretical framework)
if piece.raga:
    print(f"Raga: {piece.raga.name}")
    if hasattr(piece.raga, 'aroha') and piece.raga.aroha:
        print(f"Aroha (ascending): {piece.raga.aroha}")
    if hasattr(piece.raga, 'avaroha') and piece.raga.avaroha:  
        print(f"Avaroha (descending): {piece.raga.avaroha}")

Audio Handling

# Download audio in different formats
audio_bytes = client.download_audio("audio-id", format="wav")
with open("recording.wav", "wb") as f:
    f.write(audio_bytes)

# Download all audio associated with a transcription
client.download_and_save_transcription_audio(piece, directory="./audio/")

Data Export

# Export transcription data
excel_data = client.excel_data(piece_id)
with open("analysis.xlsx", "wb") as f:
    f.write(excel_data)

json_data = client.json_data(piece_id)
with open("transcription.json", "wb") as f:
    f.write(json_data)

Working with Hindustani Music Data

from idtap_api import Piece, Phrase, Trajectory, Pitch, Raga, Instrument

# Example: Analyze a sitar transcription
sitar_pieces = [t for t in transcriptions if t.get('instrumentation') == 'Sitar']

for trans_meta in sitar_pieces[:3]:  # First 3 sitar pieces
    piece = Piece.from_json(client.get_piece(trans_meta['_id']))
    
    # Count different types of trajectories (IDTAP's innovation)
    trajectory_types = {}
    for phrase in piece.phrases:
        for traj in phrase.trajectories:
            traj_type = getattr(traj, 'curve_type', 'straight')
            trajectory_types[traj_type] = trajectory_types.get(traj_type, 0) + 1
    
    print(f"{piece.title}:")
    print(f"  Raga: {piece.raga.name if piece.raga else 'Unknown'}")
    print(f"  Trajectory types: {trajectory_types}")
    
    # Analyze articulation patterns (performance techniques)  
    articulations = []
    for phrase in piece.phrases:
        for traj in phrase.trajectories:
            if traj.articulation:
                articulations.extend([art.stroke for art in traj.articulation])
    
    unique_arts = list(set(articulations))
    print(f"  Articulations used: {', '.join(unique_arts[:5])}")  # First 5

Key Classes

SwaraClient

The main HTTP client for interacting with the IDTAP server.

Key Methods:

  • get_viewable_transcriptions() - List accessible transcriptions
  • get_piece(id) - Load transcription data
  • save_piece(data) - Save transcription
  • excel_data(id) / json_data(id) - Export data
  • download_audio(id, format) - Download audio files
  • get_waiver_text() - Display the research waiver text that must be read
  • agree_to_waiver(i_agree=True) - Accept research waiver (required for first-time users)
  • has_agreed_to_waiver() - Check if waiver has been accepted

Musical Data Models

  • Piece - Central transcription container with metadata, audio association, and musical content
  • Phrase - Musical phrase containing trajectory data and categorizations
  • Trajectory - Detailed pitch movement data with timing and articulations
  • Pitch - Individual pitch points with frequency and timing information
  • Raga - Indian musical scale/mode definitions with theoretical rules
  • Section - Large structural divisions (alap, composition, etc.)
  • Meter - Rhythmic cycle and tempo information
  • Articulation - Performance technique annotations (meend, andolan, etc.)

Specialized Features

  • Microtonal Pitch System - Precise cent-based pitch representation
  • Hindustani Music Theory - Raga rules, sargam notation, gharana traditions
  • Performance Analysis - Ornament detection, phrase categorization
  • Multi-Track Support - Simultaneous transcription of melody and drone

Authentication

The client uses OAuth 2.0 flow with Google authentication. On first use, it will:

  1. Open a browser for Google OAuth login
  2. Securely store the authentication token using:
    • OS keyring (preferred)
    • Encrypted local file (fallback)
    • Plain text (legacy, discouraged)

Research Waiver Requirement

First-time users must agree to a research waiver before accessing transcription data. If you haven't agreed yet, you'll see an error when trying to access transcriptions:

client = SwaraClient()
transcriptions = client.get_viewable_transcriptions()  # Will raise RuntimeError

# First, read the waiver text
waiver_text = client.get_waiver_text()
print("Research Waiver:")
print(waiver_text)

# After reading, agree to the waiver
client.agree_to_waiver(i_agree=True)
transcriptions = client.get_viewable_transcriptions()  # Now works

# Check waiver status
if client.has_agreed_to_waiver():
    print("Waiver agreed - full access available")

Manual Token Management

# Initialize without auto-login
client = SwaraClient(auto_login=False)

# Login manually when needed
from idtap_api import login_google
login_google()

Advanced Usage

Batch Processing

# Process multiple transcriptions
transcriptions = client.get_viewable_transcriptions()

for trans in transcriptions:
    if trans.get('instrumentation') == 'Sitar':
        piece = Piece.from_json(client.get_piece(trans['_id']))
        
        # Analyze sitar-specific features
        total_meends = sum(
            len([art for art in traj.articulation if art.stroke == 'meend'])
            for phrase in piece.phrases
            for traj in phrase.trajectories
        )
        print(f"{piece.title}: {total_meends} meends")

Research Applications

# Raga analysis across corpus
raga_stats = {}
for trans in transcriptions:
    piece = Piece.from_json(client.get_piece(trans['_id']))
    if piece.raga:
        raga_name = piece.raga.name
        raga_stats[raga_name] = raga_stats.get(raga_name, 0) + 1

print("Raga distribution:", raga_stats)

Development

Running Tests

# Unit tests
pytest idtap_api/tests/

# Integration tests (requires authentication)
python api_testing/api_test.py

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Ensure all tests pass
  5. Submit a pull request

Documentation

  • API Reference: Full documentation of all classes and methods
  • Musical Concepts: Guide to Hindustani music terminology and theory
  • Research Examples: Academic use cases and analysis workflows

Platform Access

  • IDTAP Web Platform: swara.studio
  • Source Code: github.com/jon-myers/idtap
  • Research Paper: "Beyond Notation: A Digital Platform for Transcribing and Analyzing Oral Melodic Traditions" (ISMIR 2025)

Documentation

📖 Complete documentation is available at idtap-python-api.readthedocs.io

Support

License

MIT License - see LICENSE file for details.

Citation

If you use IDTAP in academic research, please cite the ISMIR 2025 paper:

@inproceedings{myers2025beyond,
  title={Beyond Notation: A Digital Platform for Transcribing and Analyzing Oral Melodic Traditions},
  author={Myers, Jonathan and Neuman, Dard},
  booktitle={Proceedings of the 26th International Society for Music Information Retrieval Conference},
  pages={},
  year={2025},
  address={Daejeon, South Korea},
  url={https://swara.studio}
}

IDTAP was developed at UC Santa Cruz with support from the National Endowment for the Humanities. The platform challenges Western-centric approaches to music representation by creating tools designed specifically for oral melodic traditions, enabling scholars to study Hindustani music on its own terms while applying cutting-edge computational methodologies.

About

Python API for the Interactive Digital Transcription and Analysis Platform

Resources

License

Security policy

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •