Skip to content

OpenData4Sciece/Disneyland-Resorts-Hotels

Repository files navigation

Disney Resorts' Hotels Analysis & Price Prediction

A comprehensive analysis and price prediction system for Disney Resorts hotels worldwide

Overview

This project combines traditional data analysis with machine learning to analyze Disney resort hotels globally. It features real-time data scraping, price prediction using PyTorch, and comprehensive statistical analysis. The system can analyze pricing strategies, occupancy patterns, customer satisfaction, and provide future price predictions.

Project Structure

disney-resorts-hotels/
│
├── data-analysis-disney-hotels.py     # Original analysis script
├── disney_hotel_ml_predictor.py       # ML-based price prediction script
├── requirements.txt                   # Project dependencies
├── .gitignore                        # Git ignore file
├── license.md                        # License information
│
├── data/                             # Data directory
│   ├── raw/                          # Raw scraped data
│   └── processed/                    # Processed datasets
│
├── models/                           # Saved ML models
│   └── trained_models/              # Trained model checkpoints
│
├── tests/                           # Test directory
│   └── test_scraper.py             # Scraper tests
│   └── test_predictor.py           # Predictor tests
│
└── logs/                            # Logging directory
    └── scraping_logs/              # Web scraping logs

Requirements

  • Python 3.8+
  • Required packages:
numpy>=1.21.0
pandas>=1.3.0
matplotlib>=3.4.0
seaborn>=0.11.0
scipy>=1.7.0
scikit-learn>=0.24.0
beautifulsoup4>=4.9.3
requests>=2.25.1
pytorch>=2.0.0
selenium>=4.1.0
webdriver_manager>=3.8.0
python-dateutil>=2.8.2
tqdm>=4.65.0

Installation

  1. Clone the repository:

    git clone https://github.com/yourusername/disney-resorts-hotels.git
    cd disney-resorts-hotels
  2. Create and activate a virtual environment:

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
  3. Install dependencies:

    pip install -r requirements.txt

Usage

The project offers two main scripts:

  1. Traditional Analysis:
python data-analysis-disney-hotels.py
  1. ML-based Price Prediction:
python disney_hotel_ml_predictor.py

Features

Real-time Data Collection

  • Automated web scraping of Disney resort websites
  • Real-time price and availability data
  • Historical data collection and storage
  • Rate limiting and error handling

Data Analysis

  • Statistical analysis of hotel metrics
  • Price trend analysis
  • Occupancy patterns
  • Seasonal variations
  • Special event impact analysis
  • Customer satisfaction correlation

Machine Learning Capabilities

  • Neural network-based price prediction
  • Feature engineering for ML models
  • Real-time price forecasting
  • Model performance evaluation
  • GPU acceleration support
  • Automated model retraining

Visualization & Reporting

  • Interactive visualizations
  • Price trend charts
  • Occupancy heat maps
  • Satisfaction correlation matrices
  • Performance metrics dashboards

Customization

The system can be customized through various configuration options:

  1. Scraping Parameters:
scraper_config = {
    'delay': 2,  # Seconds between requests
    'max_retries': 3,
    'timeout': 30
}
  1. Model Parameters:
model_config = {
    'learning_rate': 0.001,
    'batch_size': 32,
    'epochs': 100,
    'hidden_layers': [64, 32]
}

Output

The system generates:

  • Processed datasets in CSV format
  • Trained ML models
  • Detailed analysis reports
  • Visualization plots
  • Performance metrics
  • Log files

Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

This project is licensed under the Apache-2.0 license - see the LICENSE.md file for details.

Future Improvements

  • Implementation of advanced ML architectures
  • Addition of more Disney resorts
  • Integration with booking systems
  • Real-time price alerts
  • Mobile app development
  • API endpoint creation
  • Enhanced visualization options

Troubleshooting

Common issues and solutions:

  • Scraping errors: Check network connection and update selectors
  • Model training issues: Verify GPU availability and memory usage
  • Data processing errors: Validate input data format and completeness

Support

For questions and support:

  • Open an issue on GitHub
  • Check existing documentation
  • Review closed issues for solutions

Acknowledgments

  • Disney resorts data architecture
  • PyTorch community
  • Web scraping best practices
  • Hospitality industry insights