SPACESHIP: Synthesizable Parameter Acquisition via Closed-loop Exploration and Self-directed, Hardware-aware Intelligent Protocols for autonomous labs.
SPACESHIP is a flexible and modular framework for autonomous material synthesis. It integrates probabilistic models with hardware-aware experimentation protocols to identify synthesizable regions in high-dimensional parameter spaces β without prior constraints.
- Parameter Space Definition: Constructs the experimental parameter space by integrating chemical formulation constraints with hardware-specific capabilities.
- Synthesizable Space Mapping: Identifies and iteratively refines the synthesizable regions through closed-loop experimentation and model-guided prediction.
- Uncertainty-Aware Acquisition: Actively selects informative experiments based on model uncertainty, enabling efficient exploration of under-characterized or high-risk regions.
SPACESHIP/
βββ ParameterSpace.py # Defines experimental parameter space (must run first)
βββ SynthesizableSpace.py # β Main synthesis prediction module
βββ BaseModel/ # Collection of baseline and probabilistic models
β βββ logistic.py, mlp.py, xgboost.py
β βββ gpclassifier.py, vgpclassifier.py
β βββ VIME/
- Step 1 β Define parameter constraints:
python ParameterSpace.py
- Step 2 β Explore synthesizable space:
python SynthesizableSpace.py
Make sure to run
ParameterSpace.py
first to initialize or load experimental bounds.
Python β₯ 3.8 and the following packages are recommended:
pip install torch gpytorch scikit-learn xgboost numpy pandas matplotlib
This repository is for academic and research use only.
For questions, please contact:
Nayeon Kim β Korea Institute of Science and Technology / Korea University π§ Email: kny@kist.re.kr