Skip to content

KIST-CSRC/SPACESHIP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

7 Commits
Β 
Β 
Β 
Β 

Repository files navigation

SPACESHIP: Synthesizable Parameter Acquisition via Closed-loop Exploration and Self-directed, Hardware-aware Intelligent Protocols for autonomous labs.

SPACESHIP is a flexible and modular framework for autonomous material synthesis. It integrates probabilistic models with hardware-aware experimentation protocols to identify synthesizable regions in high-dimensional parameter spaces β€” without prior constraints.

SPACESHIP Overview

Key Features

  • Parameter Space Definition: Constructs the experimental parameter space by integrating chemical formulation constraints with hardware-specific capabilities.
  • Synthesizable Space Mapping: Identifies and iteratively refines the synthesizable regions through closed-loop experimentation and model-guided prediction.
  • Uncertainty-Aware Acquisition: Actively selects informative experiments based on model uncertainty, enabling efficient exploration of under-characterized or high-risk regions.

πŸ“ Project Structure

SPACESHIP/
β”œβ”€β”€ ParameterSpace.py                # Defines experimental parameter space (must run first)
β”œβ”€β”€ SynthesizableSpace.py           #  – Main synthesis prediction module
β”œβ”€β”€ BaseModel/                      # Collection of baseline and probabilistic models
β”‚   β”œβ”€β”€ logistic.py, mlp.py, xgboost.py
β”‚   β”œβ”€β”€ gpclassifier.py, vgpclassifier.py
β”‚   └── VIME/

βš™οΈ Usage Instructions

  1. Step 1 – Define parameter constraints:
python ParameterSpace.py
  1. Step 2 – Explore synthesizable space:
python SynthesizableSpace.py  

Make sure to run ParameterSpace.py first to initialize or load experimental bounds.


πŸ”§ Installation & Requirements

Python β‰₯ 3.8 and the following packages are recommended:

pip install torch gpytorch scikit-learn xgboost numpy pandas matplotlib

πŸ“„ License & Contact

This repository is for academic and research use only.
For questions, please contact:

Nayeon Kim – Korea Institute of Science and Technology / Korea University πŸ“§ Email: kny@kist.re.kr

About

Hardware-aware synthesizable space discovery model for autonomous labs

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published