Authors: Sara Kamali • Fabiano Baroni • Pablo Varona
Using any code or material in this repository requires prior permission from the authors.
If you reference the methods or results, please cite the paper as listed above.
MATLAB and Python source files are provided.
- Task: stereotypical finger-pinching
- Public dataset DOI: https://doi.org/10.1093/gigascience/gix034
- Context: Fig. 1 of the paper shows the task timeline and execution steps.
File | Purpose |
---|---|
MS_cls_info.mat |
Subject / component indices |
initialize_environment.m |
Parameter settings |
preparing_data_format_and_labels.m |
Re-formats data and labels for Python |
Detailed EEG pre-processing procedures are available in the companion repository:
https://github.com/GNB-UAM/Kamali_Mu_and_beta_power_precue_effects_double_dissociate_latency
- Script:
BiLSTM_Self_attention_EEG_classifier.py
- Implements a BiLSTM followed by a self-attention layer
- Generates all evaluation metrics and plots reported in the paper
File | Description |
---|---|
IWANN2025_Presentation_Kamali_etal.pdf |
Slide deck used for the IWANN 2025 conference presentation |
Kamali S., Baroni F., & Varona P. (2025).
Self-attentive Bidirectional LSTM Networks for Temporal Decoding of EEG Motor States.