A factory for building advanced RAG (Retrieval-Augmented Generation) pipelines, including:
- Standard RAG implementations
- GraphRAG architectures
- Multi-modal RAG systems
- Modular design for easy customization
- Support for various knowledge graph backends
- Integration with multiple LLM providers
- Configurable pipeline components
pip install -e .
python main.py --config examples/graphrag/config.yaml
See the examples/
directory for sample configurations and usage.
- Vector RAG (基于Qdrant实现)
- Graph RAG (支持知识图检索)
- Lightweight SQLite Cache (轻量级缓存方案)
- Multi-modal RAG (多模态检索增强生成)
- ReAct QueryEngine (交互式查询引擎)
- Query Engineering:
- Query Rewriting (查询重写)
- Sub-Questions (子问题分解)
- Agentic RAG (智能工具选择优化性能)
⭐ 如果这个项目对您有帮助,动动小手点亮Star吧!