Skip to content

ugurcsen/gods-generic

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GoDoc Go Report Card Sourcegraph Release Quality Gate Status PyPI

GoDS-Generic (Go Data Structures With Generics)

Implementation of various data structures and algorithms in Go.

Installation

Generic version

go get github.com/ugurcsen/gods-generic

Non Generic version

https://github.com/emirpasic/gods

go get github.com/emirpasic/gods

Data Structures(Generic)

Containers

All data structures implement the container interface with the following methods:

type Container[T comparable] interface {
    Empty() bool
    Size() int
    Clear()
    Values() []T
    String() string
}

Containers are either ordered or unordered. All ordered containers provide stateful iterators and some of them allow enumerable functions.

Data Structure Ordered Iterator Enumerable Referenced by
Lists
ArrayList yes yes* yes index
SinglyLinkedList yes yes yes index
DoublyLinkedList yes yes* yes index
Sets
HashSet no no no index
TreeSet yes yes* yes index
LinkedHashSet yes yes* yes index
Stacks
LinkedListStack yes yes no index
ArrayStack yes yes* no index
Maps
HashMap no no no key
TreeMap yes yes* yes key
LinkedHashMap yes yes* yes key
HashBidiMap no no no key*
TreeBidiMap yes yes* yes key*
Trees
RedBlackTree yes yes* no key
AVLTree yes yes* no key
BTree yes yes* no key
BinaryHeap yes yes* no index
Queues
LinkedListQueue yes yes no index
ArrayQueue yes yes* no index
CircularBuffer yes yes* no index
PriorityQueue yes yes* no index
*reversible *bidirectional

Lists

A list is a data structure that stores values and may have repeated values.

Implements Container interface.

type List[T comparable] interface {
    Get(index int) (T, bool)
    Remove(index int)
    Add(values ...T)
    Contains(values ...T) bool
    Sort(comparator utils.Comparator[T])
    Swap(index1, index2 int)
    Insert(index int, values ...T)
    Set(index int, value T)
    
    containers.Container[T]
    // Empty() bool
    // Size() int
    // Clear()
    // Values() []interface{}
    // String() string
}

ArrayList

A list backed by a dynamic array that grows and shrinks implicitly.

Implements List, ReverseIteratorWithIndex, EnumerableWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import (
	"github.com/ugurcsen/gods-generic/lists/arraylist"
	"github.com/ugurcsen/gods-generic/utils"
)

func main() {
    list := arraylist.New[string]()
    list.Add("a")                         // ["a"]
    list.Add("c", "b")                    // ["a","c","b"]
    list.Sort(utils.StringComparator)     // ["a","b","c"]
    _, _ = list.Get(0)                    // "a",true
    _, _ = list.Get(100)                  // nil,false
    _ = list.Contains("a", "b", "c")      // true
    _ = list.Contains("a", "b", "c", "d") // false
    list.Swap(0, 1)                       // ["b","a",c"]
    list.Remove(2)                        // ["b","a"]
    list.Remove(1)                        // ["b"]
    list.Remove(0)                        // []
    list.Remove(0)                        // [] (ignored)
    _ = list.Empty()                      // true
    _ = list.Size()                       // 0
    list.Add("a")                         // ["a"]
    list.Clear()                          // []
	list.Insert(0, "b")                   // ["b"]
	list.Insert(0, "a")                   // ["a","b"]
}

SinglyLinkedList

A list where each element points to the next element in the list.

Implements List, IteratorWithIndex, EnumerableWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import (
	sll "github.com/ugurcsen/gods-generic/lists/singlylinkedlist"
	"github.com/ugurcsen/gods-generic/utils"
)

func main() {
    list := sll.New[string]()
    list.Add("a")                         // ["a"]
    list.Append("b")                      // ["a","b"] (same as Add())
    list.Prepend("c")                     // ["c","a","b"]
    list.Sort(utils.StringComparator)     // ["a","b","c"]
    _, _ = list.Get(0)                    // "a",true
    _, _ = list.Get(100)                  // nil,false
    _ = list.Contains("a", "b", "c")      // true
    _ = list.Contains("a", "b", "c", "d") // false
    list.Remove(2)                        // ["a","b"]
    list.Remove(1)                        // ["a"]
    list.Remove(0)                        // []
    list.Remove(0)                        // [] (ignored)
    _ = list.Empty()                      // true
    _ = list.Size()                       // 0
    list.Add("a")                         // ["a"]
    list.Clear()                          // []
	list.Insert(0, "b")                   // ["b"]
	list.Insert(0, "a")                   // ["a","b"]
}

DoublyLinkedList

A list where each element points to the next and previous elements in the list.

Implements List, ReverseIteratorWithIndex, EnumerableWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import (
	dll "github.com/ugurcsen/gods-generic/lists/doublylinkedlist"
	"github.com/ugurcsen/gods-generic/utils"
)

func main() {
    list := dll.New[string]()
    list.Add("a")                         // ["a"]
    list.Append("b")                      // ["a","b"] (same as Add())
    list.Prepend("c")                     // ["c","a","b"]
    list.Sort(utils.StringComparator)     // ["a","b","c"]
    _, _ = list.Get(0)                    // "a",true
    _, _ = list.Get(100)                  // nil,false
    _ = list.Contains("a", "b", "c")      // true
    _ = list.Contains("a", "b", "c", "d") // false
    list.Remove(2)                        // ["a","b"]
    list.Remove(1)                        // ["a"]
    list.Remove(0)                        // []
    list.Remove(0)                        // [] (ignored)
    _ = list.Empty()                      // true
    _ = list.Size()                       // 0
    list.Add("a")                         // ["a"]
    list.Clear()                          // []
	list.Insert(0, "b")                   // ["b"]
	list.Insert(0, "a")                   // ["a","b"]
}

Sets

A set is a data structure that can store elements and has no repeated values. It is a computer implementation of the mathematical concept of a finite set. Unlike most other collection types, rather than retrieving a specific element from a set, one typically tests an element for membership in a set. This structure is often used to ensure that no duplicates are present in a container.

Set additionally allow set operations such as intersection, union, difference, etc.

Implements Container interface.

type Set[T comparable] interface {
    Add(elements ...T)
    Remove(elements ...T)
    Contains(elements ...T) bool
    // Intersection(another *Set) *Set
    // Union(another *Set) *Set
    // Difference(another *Set) *Set
    
    containers.Container[T]
    // Empty() bool
    // Size() int
    // Clear()
    // Values() []interface{}
    // String() string
}

HashSet

A set backed by a hash table (actually a Go's map). It makes no guarantees as to the iteration order of the set.

Implements Set, JSONSerializer and JSONDeserializer interfaces.

package main

import "github.com/ugurcsen/gods-generic/sets/hashset"

func main() {
    set := hashset.New[int]() // empty (keys are of type int)
    set.Add(1)                // 1
    set.Add(2, 2, 3, 4, 5)    // 3, 1, 2, 4, 5 (random order, duplicates ignored)
    set.Remove(4)             // 5, 3, 2, 1 (random order)
    set.Remove(2, 3)          // 1, 5 (random order)
    set.Contains(1)           // true
    set.Contains(1, 5)        // true
    set.Contains(1, 6)        // false
    _ = set.Values()          // []int{5,1} (random order)
    set.Clear()               // empty
    set.Empty()               // true
    set.Size()                // 0
}

TreeSet

A set backed by a red-black tree to keep the elements ordered with respect to the comparator.

Implements Set, ReverseIteratorWithIndex, EnumerableWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import "github.com/ugurcsen/gods-generic/sets/treeset"

func main() {
	set := treeset.NewWithNumberComparator() // empty (keys are of type int)
	set.Add(1)                            // 1
	set.Add(2, 2, 3, 4, 5)                // 1, 2, 3, 4, 5 (in order, duplicates ignored)
	set.Remove(4)                         // 1, 2, 3, 5 (in order)
	set.Remove(2, 3)                      // 1, 5 (in order)
	set.Contains(1)                       // true
	set.Contains(1, 5)                    // true
	set.Contains(1, 6)                    // false
	_ = set.Values()                      // []int{1,5} (in order)
	set.Clear()                           // empty
	set.Empty()                           // true
	set.Size()                            // 0
}

LinkedHashSet

A set that preserves insertion-order. Data structure is backed by a hash table to store values and doubly-linked list to store insertion ordering.

Implements Set, ReverseIteratorWithIndex, EnumerableWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import "github.com/ugurcsen/gods-generic/sets/linkedhashset"

func main() {
	set := linkedhashset.New[int]() // empty
	set.Add(5)                 // 5
	set.Add(4, 4, 3, 2, 1)     // 5, 4, 3, 2, 1 (in insertion-order, duplicates ignored)
	set.Add(4)                 // 5, 4, 3, 2, 1 (duplicates ignored, insertion-order unchanged)
	set.Remove(4)              // 5, 3, 2, 1 (in insertion-order)
	set.Remove(2, 3)           // 5, 1 (in insertion-order)
	set.Contains(1)            // true
	set.Contains(1, 5)         // true
	set.Contains(1, 6)         // false
	_ = set.Values()           // []int{5, 1} (in insertion-order)
	set.Clear()                // empty
	set.Empty()                // true
	set.Size()                 // 0
}

Stacks

A stack that represents a last-in-first-out (LIFO) data structure. The usual push and pop operations are provided, as well as a method to peek at the top item on the stack.

Implements Container interface.

type Stack[T comparable] interface {
    Push(value T)
    Pop() (value T, ok bool)
    Peek() (value T, ok bool)
    
    containers.Container[T]
    // Empty() bool
    // Size() int
    // Clear()
    // Values() []interface{}
    // String() string
}

LinkedListStack

A stack based on a linked list.

Implements Stack, IteratorWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import lls "github.com/ugurcsen/gods-generic/stacks/linkedliststack"

func main() {
	stack := lls.New[int]()  // empty
	stack.Push(1)       // 1
	stack.Push(2)       // 1, 2
	stack.Values()      // 2, 1 (LIFO order)
	_, _ = stack.Peek() // 2,true
	_, _ = stack.Pop()  // 2, true
	_, _ = stack.Pop()  // 1, true
	_, _ = stack.Pop()  // nil, false (nothing to pop)
	stack.Push(1)       // 1
	stack.Clear()       // empty
	stack.Empty()       // true
	stack.Size()        // 0
}

ArrayStack

A stack based on a array list.

Implements Stack, IteratorWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import "github.com/ugurcsen/gods-generic/stacks/arraystack"

func main() {
	stack := arraystack.New[int]() // empty
	stack.Push(1)             // 1
	stack.Push(2)             // 1, 2
	stack.Values()            // 2, 1 (LIFO order)
	_, _ = stack.Peek()       // 2,true
	_, _ = stack.Pop()        // 2, true
	_, _ = stack.Pop()        // 1, true
	_, _ = stack.Pop()        // nil, false (nothing to pop)
	stack.Push(1)             // 1
	stack.Clear()             // empty
	stack.Empty()             // true
	stack.Size()              // 0
}

Maps

A Map is a data structure that maps keys to values. A map cannot contain duplicate keys and each key can map to at most one value.

Implements Container interface.

type Map[K, T comparable] interface {
    Put(key K, value T)
    Get(key K) (value T, found bool)
    Remove(key K)
    Keys() []K
    
    containers.Container[T]
    // Empty() bool
    // Size() int
    // Clear()
    // Values() []interface{}
    // String() string
}

A BidiMap is an extension to the Map. A bidirectional map (BidiMap), also called a hash bag, is an associative data structure in which the key-value pairs form a one-to-one relation. This relation works in both directions by allow the value to also act as a key to key, e.g. a pair (a,b) thus provides a coupling between 'a' and 'b' so that 'b' can be found when 'a' is used as a key and 'a' can be found when 'b' is used as a key.

type BidiMap[K, T comparable] interface {
    GetKey(value T) (key K, found bool)
    
    Map[K, T]
}

HashMap

A map based on hash tables. Keys are unordered.

Implements Map, JSONSerializer and JSONDeserializer interfaces.

package main

import "github.com/ugurcsen/gods-generic/maps/hashmap"

func main() {
	m := hashmap.New[int, string]() // empty
	m.Put(1, "x")                   // 1->x
	m.Put(2, "b")                   // 2->b, 1->x (random order)
	m.Put(1, "a")                   // 2->b, 1->a (random order)
	_, _ = m.Get(2)                 // b, true
	_, _ = m.Get(3)                 // nil, false
	_ = m.Values()                  // []string{"b", "a"} (random order)
	_ = m.Keys()                    // []int{1, 2} (random order)
	m.Remove(1)                     // 2->b
	m.Clear()                       // empty
	m.Empty()                       // true
	m.Size()                        // 0
}

TreeMap

A map based on red-black tree. Keys are ordered with respect to the comparator.

Implements Map, ReverseIteratorWithIndex, EnumerableWithKey, JSONSerializer and JSONDeserializer interfaces.

package main

import "github.com/ugurcsen/gods-generic/maps/treemap"

func main() {
	m := treemap.NewWithNumberComparator[string]() // empty (keys are of type int)
	m.Put(1, "x")                                  // 1->x
	m.Put(2, "b")                                  // 1->x, 2->b (in order)
	m.Put(1, "a")                                  // 1->a, 2->b (in order)
	_, _ = m.Get(2)                                // b, true
	_, _ = m.Get(3)                                // nil, false
	_ = m.Values()                                 // []string{"a", "b"} (in order)
	_ = m.Keys()                                   // []int{1, 2} (in order)
	m.Remove(1)                                    // 2->b
	m.Clear()                                      // empty
	m.Empty()                                      // true
	m.Size()                                       // 0

	// Other:
	m.Min() // Returns the minimum key and its value from map.
	m.Max() // Returns the maximum key and its value from map.
}

LinkedHashMap

A map that preserves insertion-order. It is backed by a hash table to store values and doubly-linked list to store ordering.

Implements Map, ReverseIteratorWithIndex, EnumerableWithKey, JSONSerializer and JSONDeserializer interfaces.

package main

import "github.com/ugurcsen/gods-generic/maps/linkedhashmap"

func main() {
    m := linkedhashmap.New[int, string]() // empty (keys are of type int)
    m.Put(2, "b")                         // 2->b
    m.Put(1, "x")                         // 2->b, 1->x (insertion-order)
    m.Put(1, "a")                         // 2->b, 1->a (insertion-order)
    _, _ = m.Get(2)                       // b, true
    _, _ = m.Get(3)                       // nil, false
    _ = m.Values()                        // []string{"b", "a"} (insertion-order)
    _ = m.Keys()                          // []int{2, 1} (insertion-order)
    m.Remove(1)                           // 2->b
    m.Clear()                             // empty
    m.Empty()                             // true
    m.Size()                              // 0
}

HashBidiMap

A map based on two hashmaps. Keys are unordered.

Implements BidiMap, JSONSerializer and JSONDeserializer interfaces.

package main

import "github.com/ugurcsen/gods-generic/maps/hashbidimap"

func main() {
    m := hashbidimap.New[int, string]() // empty
    m.Put(1, "x")                       // 1->x
    m.Put(3, "b")                       // 1->x, 3->b (random order)
    m.Put(1, "a")                       // 1->a, 3->b (random order)
    m.Put(2, "b")                       // 1->a, 2->b (random order)
    _, _ = m.GetKey("a")                // 1, true
    _, _ = m.Get(2)                     // b, true
    _, _ = m.Get(3)                     // nil, false
    _ = m.Values()                      // []string{"a", "b"} (random order)
    _ = m.Keys()                        // []int{1, 2} (random order)
    m.Remove(1)                         // 2->b
    m.Clear()                           // empty
    m.Empty()                           // true
    m.Size()                            // 0
}

TreeBidiMap

A map based on red-black tree. This map guarantees that the map will be in both ascending key and value order. Other than key and value ordering, the goal with this structure is to avoid duplication of elements (unlike in HashBidiMap), which can be significant if contained elements are large.

Implements BidiMap, ReverseIteratorWithIndex, EnumerableWithKey, JSONSerializer and JSONDeserializer interfaces.

package main

import (
	"github.com/ugurcsen/gods-generic/maps/treebidimap"
	"github.com/ugurcsen/gods-generic/utils"
)

func main() {
    m := treebidimap.NewWith[int, string](utils.NumberComparator[int], utils.StringComparator)
    m.Put(1, "x")        // 1->x
    m.Put(3, "b")        // 1->x, 3->b (ordered)
    m.Put(1, "a")        // 1->a, 3->b (ordered)
    m.Put(2, "b")        // 1->a, 2->b (ordered)
    _, _ = m.GetKey("a") // 1, true
    _, _ = m.Get(2)      // b, true
    _, _ = m.Get(3)      // nil, false
    _ = m.Values()       // []string{"a", "b"} (ordered)
    _ = m.Keys()         // []int{1, 2} (ordered)
    m.Remove(1)          // 2->b
    m.Clear()            // empty
    m.Empty()            // true
    m.Size()             // 0
}

Trees

A tree is a widely used data data structure that simulates a hierarchical tree structure, with a root value and subtrees of children, represented as a set of linked nodes; thus no cyclic links.

Implements Container interface.

type Tree[T comparable] interface {
    containers.Container[T]
    // Empty() bool
    // Size() int
    // Clear()
    // Values() []interface{}
    // String() string
}

RedBlackTree

A red–black tree is a binary search tree with an extra bit of data per node, its color, which can be either red or black. The extra bit of storage ensures an approximately balanced tree by constraining how nodes are colored from any path from the root to the leaf. Thus, it is a data structure which is a type of self-balancing binary search tree.

The balancing of the tree is not perfect but it is good enough to allow it to guarantee searching in O(log n) time, where n is the total number of elements in the tree. The insertion and deletion operations, along with the tree rearrangement and recoloring, are also performed in O(log n) time. Wikipedia

Implements Tree, ReverseIteratorWithKey, JSONSerializer and JSONDeserializer interfaces.

package main

import (
	"fmt"
	rbt "github.com/ugurcsen/gods-generic/trees/redblacktree"
)

func main() {
	tree := rbt.NewWithNumberComparator[string]() // empty (keys are of type int)

	tree.Put(1, "x") // 1->x
	tree.Put(2, "b") // 1->x, 2->b (in order)
	tree.Put(1, "a") // 1->a, 2->b (in order, replacement)
	tree.Put(3, "c") // 1->a, 2->b, 3->c (in order)
	tree.Put(4, "d") // 1->a, 2->b, 3->c, 4->d (in order)
	tree.Put(5, "e") // 1->a, 2->b, 3->c, 4->d, 5->e (in order)
	tree.Put(6, "f") // 1->a, 2->b, 3->c, 4->d, 5->e, 6->f (in order)

	fmt.Println(tree)
	//
	//  RedBlackTree
	//  │           ┌── 6
	//	│       ┌── 5
	//	│   ┌── 4
	//	│   │   └── 3
	//	└── 2
	//		└── 1

	_ = tree.Values() // []string{"a", "b", "c", "d", "e", "f"} (in order)
	_ = tree.Keys()   // []int{1, 2, 3, 4, 5, 6} (in order)

	tree.Remove(2) // 1->a, 3->c, 4->d, 5->e, 6->f (in order)
	fmt.Println(tree)
	//
	//  RedBlackTree
	//  │       ┌── 6
	//  │   ┌── 5
	//  └── 4
	//      │   ┌── 3
	//      └── 1

	tree.Clear() // empty
	tree.Empty() // true
	tree.Size()  // 0

	// Other:
	tree.Left() // gets the left-most (min) node
	tree.Right() // get the right-most (max) node
	tree.Floor(1) // get the floor node
	tree.Ceiling(1) // get the ceiling node
}

Extending the red-black tree's functionality has been demonstrated in the following example.

AVLTree

AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Lookup, insertion, and deletion all take O(log n) time in both the average and worst cases, where n is the number of nodes in the tree prior to the operation. Insertions and deletions may require the tree to be rebalanced by one or more tree rotations.

AVL trees are often compared with red–black trees because both support the same set of operations and take O(log n) time for the basic operations. For lookup-intensive applications, AVL trees are faster than red–black trees because they are more strictly balanced. Wikipedia

Implements Tree, ReverseIteratorWithKey, JSONSerializer and JSONDeserializer interfaces.


AVL tree with balance factors (green)

package main

import (
	"fmt"
	avl "github.com/ugurcsen/gods-generic/trees/avltree"
)

func main() {
	tree := avl.NewWithNumberComparator[string]() // empty(keys are of type int)

	tree.Put(1, "x") // 1->x
	tree.Put(2, "b") // 1->x, 2->b (in order)
	tree.Put(1, "a") // 1->a, 2->b (in order, replacement)
	tree.Put(3, "c") // 1->a, 2->b, 3->c (in order)
	tree.Put(4, "d") // 1->a, 2->b, 3->c, 4->d (in order)
	tree.Put(5, "e") // 1->a, 2->b, 3->c, 4->d, 5->e (in order)
	tree.Put(6, "f") // 1->a, 2->b, 3->c, 4->d, 5->e, 6->f (in order)

	fmt.Println(tree)
	//
	//  AVLTree
	//  │       ┌── 6
	//  │   ┌── 5
	//  └── 4
	//      │   ┌── 3
	//      └── 2
	//          └── 1


	_ = tree.Values() // []string{"a", "b", "c", "d", "e", "f"} (in order)
	_ = tree.Keys()   // []int{1, 2, 3, 4, 5, 6} (in order)

	tree.Remove(2) // 1->a, 3->c, 4->d, 5->e, 6->f (in order)
	fmt.Println(tree)
	//
	//  AVLTree
	//  │       ┌── 6
	//  │   ┌── 5
	//  └── 4
	//      └── 3
	//          └── 1

	tree.Clear() // empty
	tree.Empty() // true
	tree.Size()  // 0
}

BTree

B-tree is a self-balancing tree data structure that keeps data sorted and allows searches, sequential access, insertions, and deletions in logarithmic time. The B-tree is a generalization of a binary search tree in that a node can have more than two children.

According to Knuth's definition, a B-tree of order m is a tree which satisfies the following properties:

  • Every node has at most m children.
  • Every non-leaf node (except root) has at least ⌈m/2⌉ children.
  • The root has at least two children if it is not a leaf node.
  • A non-leaf node with k children contains k−1 keys.
  • All leaves appear in the same level

Each internal node’s keys act as separation values which divide its subtrees. For example, if an internal node has 3 child nodes (or subtrees) then it must have 2 keys: a1 and a2. All values in the leftmost subtree will be less than a1, all values in the middle subtree will be between a1 and a2, and all values in the rightmost subtree will be greater than a2.Wikipedia

Implements Tree, ReverseIteratorWithKey, JSONSerializer and JSONDeserializer interfaces.

package main

import (
	"fmt"
	"github.com/ugurcsen/gods-generic/trees/btree"
)

func main() {
	tree := btree.NewWithNumberComparator[string](3) // empty (keys are of type int)

	tree.Put(1, "x") // 1->x
	tree.Put(2, "b") // 1->x, 2->b (in order)
	tree.Put(1, "a") // 1->a, 2->b (in order, replacement)
	tree.Put(3, "c") // 1->a, 2->b, 3->c (in order)
	tree.Put(4, "d") // 1->a, 2->b, 3->c, 4->d (in order)
	tree.Put(5, "e") // 1->a, 2->b, 3->c, 4->d, 5->e (in order)
	tree.Put(6, "f") // 1->a, 2->b, 3->c, 4->d, 5->e, 6->f (in order)
	tree.Put(7, "g") // 1->a, 2->b, 3->c, 4->d, 5->e, 6->f, 7->g (in order)

	fmt.Println(tree)
	// BTree
	//         1
	//     2
	//         3
	// 4
	//         5
	//     6
	//         7

	_ = tree.Values() // []string{"a", "b", "c", "d", "e", "f", "g"} (in order)
	_ = tree.Keys()   // []string{1, 2, 3, 4, 5, 6, 7} (in order)

	tree.Remove(2) // 1->a, 3->c, 4->d, 5->e, 6->f, 7->g (in order)
	fmt.Println(tree)
	// BTree
	//     1
	//     3
	// 4
	//     5
	// 6
	//     7

	tree.Clear() // empty
	tree.Empty() // true
	tree.Size()  // 0

	// Other:
	tree.Height() // gets the height of the tree
	tree.Left() // gets the left-most (min) node
	tree.LeftKey() // get the left-most (min) node's key
	tree.LeftValue() // get the left-most (min) node's value
	tree.Right() // get the right-most (max) node
	tree.RightKey() // get the right-most (max) node's key
	tree.RightValue() // get the right-most (max) node's value
}

BinaryHeap

A binary heap is a tree created using a binary tree. It can be seen as a binary tree with two additional constraints:

  • Shape property:

    A binary heap is a complete binary tree; that is, all levels of the tree, except possibly the last one (deepest) are fully filled, and, if the last level of the tree is not complete, the nodes of that level are filled from left to right.

  • Heap property:

    All nodes are either greater than or equal to or less than or equal to each of its children, according to a comparison predicate defined for the heap. Wikipedia

Implements Tree, ReverseIteratorWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import (
	"github.com/ugurcsen/gods-generic/trees/binaryheap"
	"github.com/ugurcsen/gods-generic/utils"
)

func main() {

    // Min-heap
    heap := binaryheap.NewWithNumberComparator[int]() // empty (min-heap)
    heap.Push(2)                                      // 2
    heap.Push(3)                                      // 2, 3
    heap.Push(1)                                      // 1, 3, 2
    heap.Values()                                     // 1, 3, 2
    _, _ = heap.Peek()                                // 1,true
    _, _ = heap.Pop()                                 // 1, true
    _, _ = heap.Pop()                                 // 2, true
    _, _ = heap.Pop()                                 // 3, true
    _, _ = heap.Pop()                                 // nil, false (nothing to pop)
    heap.Push(1)                                      // 1
    heap.Clear()                                      // empty
    heap.Empty()                                      // true
    heap.Size()                                       // 0
  
    // Max-heap
    inverseIntComparator := func(a, b int) int {
        return -utils.NumberComparator[int](a, b)
    }
    heap = binaryheap.NewWith(inverseIntComparator) // empty (min-heap)
    heap.Push(2)                                    // 2
    heap.Push(3)                                    // 3, 2
    heap.Push(1)                                    // 3, 2, 1
    heap.Values()                                   // 3, 2, 1
}

Queues

A queue that represents a first-in-first-out (FIFO) data structure. The usual enqueue and dequeue operations are provided, as well as a method to peek at the first item in the queue.

Implements Container interface.

type Queue[T comparable] interface {
    Enqueue(value T)
    Dequeue() (value T, ok bool)
    Peek() (value T, ok bool)
    
    containers.Container[T]
    // Empty() bool
    // Size() int
    // Clear()
    // Values() []interface{}
    // String() string
}

LinkedListQueue

A queue based on a linked list.

Implements Queue, IteratorWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import llq "github.com/ugurcsen/gods-generic/queues/linkedlistqueue"

// LinkedListQueueExample to demonstrate basic usage of LinkedListQueue
func main() {
    queue := llq.New[int]()     // empty
    queue.Enqueue(1)       // 1
    queue.Enqueue(2)       // 1, 2
    _ = queue.Values()     // 1, 2 (FIFO order)
    _, _ = queue.Peek()    // 1,true
    _, _ = queue.Dequeue() // 1, true
    _, _ = queue.Dequeue() // 2, true
    _, _ = queue.Dequeue() // nil, false (nothing to deque)
    queue.Enqueue(1)       // 1
    queue.Clear()          // empty
    queue.Empty()          // true
    _ = queue.Size()       // 0
}

ArrayQueue

A queue based on a array list.

Implements Queue, ReverseIteratorWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import aq "github.com/ugurcsen/gods-generic/queues/arrayqueue"

// ArrayQueueExample to demonstrate basic usage of ArrayQueue
func main() {
    queue := aq.New[int]()      // empty
    queue.Enqueue(1)       // 1
    queue.Enqueue(2)       // 1, 2
    _ = queue.Values()     // 1, 2 (FIFO order)
    _, _ = queue.Peek()    // 1,true
    _, _ = queue.Dequeue() // 1, true
    _, _ = queue.Dequeue() // 2, true
    _, _ = queue.Dequeue() // nil, false (nothing to deque)
    queue.Enqueue(1)       // 1
    queue.Clear()          // empty
    queue.Empty()          // true
    _ = queue.Size()       // 0
}

CircularBuffer

A circular buffer, circular queue, cyclic buffer or ring buffer is a data structure that uses a single, fixed-size buffer as if it were connected end-to-end. This structure lends itself easily to buffering data streams.

Implements Queue, ReverseIteratorWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import cb "github.com/ugurcsen/gods-generic/queues/circularbuffer"

// CircularBufferExample to demonstrate basic usage of CircularBuffer
func main() {
    queue := cb.New[int](3)     // empty (max size is 3)
    queue.Enqueue(1)       // 1
    queue.Enqueue(2)       // 1, 2
    queue.Enqueue(3)       // 1, 2, 3
    _ = queue.Values()     // 1, 2, 3
    queue.Enqueue(3)       // 4, 2, 3
    _, _ = queue.Peek()    // 4,true
    _, _ = queue.Dequeue() // 4, true
    _, _ = queue.Dequeue() // 2, true
    _, _ = queue.Dequeue() // 3, true
    _, _ = queue.Dequeue() // nil, false (nothing to deque)
    queue.Enqueue(1)       // 1
    queue.Clear()          // empty
    queue.Empty()          // true
    _ = queue.Size()       // 0
}

PriorityQueue

A priority queue is a special type of queue in which each element is associated with a priority value. And, elements are served on the basis of their priority. That is, higher priority elements are served first. However, if elements with the same priority occur, they are served according to their order in the queue.

Implements Queue, ReverseIteratorWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import (
  pq "github.com/ugurcsen/gods-generic/queues/priorityqueue"
  "github.com/ugurcsen/gods-generic/utils"
)

// Element is an entry in the priority queue
type Element struct {
    name     string
    priority int
}

// Comparator function (sort by element's priority value in descending order)
func byPriority(a, b Element) int {
    priorityA := a.priority
    priorityB := b.priority
    return -utils.NumberComparator[int](priorityA, priorityB) // "-" descending order
}

// PriorityQueueExample to demonstrate basic usage of BinaryHeap
func main() {
    a := Element{name: "a", priority: 1}
    b := Element{name: "b", priority: 2}
    c := Element{name: "c", priority: 3}
  
    queue := pq.NewWith[Element](byPriority) // empty
    queue.Enqueue(a)                         // {a 1}
    queue.Enqueue(c)                         // {c 3}, {a 1}
    queue.Enqueue(b)                         // {c 3}, {b 2}, {a 1}
    _ = queue.Values()                       // [{c 3} {b 2} {a 1}]
    _, _ = queue.Peek()                      // {c 3} true
    _, _ = queue.Dequeue()                   // {c 3} true
    _, _ = queue.Dequeue()                   // {b 2} true
    _, _ = queue.Dequeue()                   // {a 1} true
    _, _ = queue.Dequeue()                   // <nil> false (nothing to dequeue)
    queue.Clear()                            // empty
    _ = queue.Empty()                        // true
    _ = queue.Size()                         // 0
}

Functions

Various helper functions used throughout the library.

Comparator

Some data structures (e.g. TreeMap, TreeSet) require a comparator function to automatically keep their elements sorted upon insertion. This comparator is necessary during the initalization.

Comparator is defined as:

Return values (int):

negative , if a < b
zero     , if a == b
positive , if a > b

Comparator signature:

type ComparableNumber interface {
    int | int8 | int16 | int32 | int64 | uint | uint8 | uint16 | uint32 | uint64 | float32 | float64
}

type Comparator[T comparable] func(a, b T) int

All common comparators for builtin types are included in the library:

func StringComparator(a, b string) int

func NumberComparator[T ComparableNumber](a, b T) int  // For int | int8 | int16 | int32 | int64 | uint | uint8 | uint16 | uint32 | uint64 | float32 | float64

func ByteComparator(a, b byte) int

func RuneComparator(a, b rune) int

func TimeComparator(a, b time.Time) int

Writing custom comparators is easy:

package main

import (
	"fmt"
	"github.com/ugurcsen/gods-generic/sets/treeset"
)

type User struct {
	id   int
	name string
}

// Custom comparator (sort by IDs)
func byID(a, b User) int {

	// Type assertion, program will panic if this is not respected
	c1 := a
	c2 := b

	switch {
	case c1.id > c2.id:
		return 1
	case c1.id < c2.id:
		return -1
	default:
		return 0
	}
}

func main() {
	set := treeset.NewWith[User](byID)

	set.Add(User{2, "Second"})
	set.Add(User{3, "Third"})
	set.Add(User{1, "First"})
	set.Add(User{4, "Fourth"})

	fmt.Println(set) // {1 First}, {2 Second}, {3 Third}, {4 Fourth}
}

Iterator

All ordered containers have stateful iterators. Typically an iterator is obtained by Iterator() function of an ordered container. Once obtained, iterator's Next() function moves the iterator to the next element and returns true if there was a next element. If there was an element, then element's can be obtained by iterator's Value() function. Depending on the ordering type, it's position can be obtained by iterator's Index() or Key() functions. Some containers even provide reversible iterators, essentially the same, but provide another extra Prev() function that moves the iterator to the previous element and returns true if there was a previous element.

Note: it is unsafe to remove elements from container while iterating.

IteratorWithIndex

An iterator whose elements are referenced by an index.

Typical usage:

it := list.Iterator()
for it.Next() {
	index, value := it.Index(), it.Value()
	...
}

Other usages:

if it.First() {
	firstIndex, firstValue := it.Index(), it.Value()
	...
}
for it.Begin(); it.Next(); {
	...
}

Seeking to a specific element:

// Seek function, i.e. find element starting with "b"
seek := func(index K, value T) bool {
    return strings.HasSuffix(value, "b")
}

// Seek to the condition and continue traversal from that point (forward).
// assumes it.Begin() was called.
for found := it.NextTo(seek); found; found = it.Next() {
    index, value := it.Index(), it.Value()
    ...
}

IteratorWithKey

An iterator whose elements are referenced by a key.

Typical usage:

it := tree.Iterator()
for it.Next() {
	key, value := it.Key(), it.Value()
	...
}

Other usages:

if it.First() {
	firstKey, firstValue := it.Key(), it.Value()
	...
}
for it.Begin(); it.Next(); {
	...
}

Seeking to a specific element from the current iterator position:

// Seek function, i.e. find element starting with "b"
seek := func(key K, value T) bool {
    return strings.HasSuffix(value, "b")
}

// Seek to the condition and continue traversal from that point (forward).
// assumes it.Begin() was called.
for found := it.NextTo(seek); found; found = it.Next() {
    key, value := it.Key(), it.Value()
    ...
}

ReverseIteratorWithIndex

An iterator whose elements are referenced by an index. Provides all functions as IteratorWithIndex, but can also be used for reverse iteration.

Typical usage of iteration in reverse:

it := list.Iterator()
for it.End(); it.Prev(); {
	index, value := it.Index(), it.Value()
	...
}

Other usages:

if it.Last() {
	lastIndex, lastValue := it.Index(), it.Value()
	...
}

Seeking to a specific element:

// Seek function, i.e. find element starting with "b"
seek := func(index K, value T) bool {
    return strings.HasSuffix(value, "b")
}

// Seek to the condition and continue traversal from that point (in reverse).
// assumes it.End() was called.
for found := it.PrevTo(seek); found; found = it.Prev() {
    index, value := it.Index(), it.Value()
	...
}

ReverseIteratorWithKey

An iterator whose elements are referenced by a key. Provides all functions as IteratorWithKey, but can also be used for reverse iteration.

Typical usage of iteration in reverse:

it := tree.Iterator()
for it.End(); it.Prev(); {
	key, value := it.Key(), it.Value()
	...
}

Other usages:

if it.Last() {
	lastKey, lastValue := it.Key(), it.Value()
	...
}
// Seek function, i.e. find element starting with "b"
seek := func(key K, value T) bool {
    return strings.HasSuffix(value, "b")
}

// Seek to the condition and continue traversal from that point (in reverse).
// assumes it.End() was called.
for found := it.PrevTo(seek); found; found = it.Prev() {
    key, value := it.Key(), it.Value()
	...
}

Enumerable

Enumerable functions for ordered containers that implement EnumerableWithIndex or EnumerableWithKey interfaces.

EnumerableWithIndex

Enumerable functions for ordered containers whose values can be fetched by an index.

Each

Calls the given function once for each element, passing that element's index and value.

Each(func(index K, value T))

Map

Invokes the given function once for each element and returns a container containing the values returned by the given function.

Map(func(index K, value T) T) Container

Select

Returns a new container containing all elements for which the given function returns a true value.

Select(func(index K, value T) bool) Container

Any

Passes each element of the container to the given function and returns true if the function ever returns true for any element.

Any(func(index K, value T) bool) bool

All

Passes each element of the container to the given function and returns true if the function returns true for all elements.

All(func(index K, value T) bool) bool

Find

Passes each element of the container to the given function and returns the first (index,value) for which the function is true or -1,nil otherwise if no element matches the criteria.

Find(func(index K, value T) bool) (K, T)}

Example:

package main

import (
	"fmt"
	"github.com/ugurcsen/gods-generic/sets/treeset"
)

func printSet(txt string, set *treeset.Set[int]) {
    fmt.Print(txt, "[ ")
    set.Each(func(index int, value int) {
        fmt.Print(value, " ")
    })
    fmt.Println("]")
}

// EnumerableWithIndexExample to demonstrate basic usage of EnumerableWithIndex
func main() {
    set := treeset.NewWithNumberComparator()
    set.Add(2, 3, 4, 2, 5, 6, 7, 8)
    printSet("Initial", set) // [ 2 3 4 5 6 7 8 ]
  
    even := set.Select(func(index int, value int) bool {
        return value%2 == 0
    })
    printSet("Even numbers", even) // [ 2 4 6 8 ]
  
    foundIndex, foundValue := set.Find(func(index int, value int) bool {
        return value%2 == 0 && value%3 == 0
    })
    if foundIndex != -1 {
        fmt.Println("Number divisible by 2 and 3 found is", foundValue, "at index", foundIndex) // value: 6, index: 4
    }
  
    square := set.Map(func(index int, value int) int {
        return value * value
    })
    printSet("Numbers squared", square) // [ 4 9 16 25 36 49 64 ]
  
    bigger := set.Any(func(index int, value int) bool {
        return value > 5
    })
    fmt.Println("Set contains a number bigger than 5 is ", bigger) // true
  
    positive := set.All(func(index int, value int) bool {
        return value > 0
    })
    fmt.Println("All numbers are positive is", positive) // true
  
    evenNumbersSquared := set.Select(func(index int, value int) bool {
        return value%2 == 0
    }).Map(func(index int, value int) int {
        return value * value
    })
    printSet("Chaining", evenNumbersSquared) // [ 4 16 36 64 ]
}

EnumerableWithKey

Enumerable functions for ordered containers whose values whose elements are key/value pairs.

Each

Calls the given function once for each element, passing that element's key and value.

Each(func(key K, value T))

Map

Invokes the given function once for each element and returns a container containing the values returned by the given function as key/value pairs.

Map(func(key K, value T) (K, T)) Container

Select

Returns a new container containing all elements for which the given function returns a true value.

Select(func(key K, value T) bool) Container

Any

Passes each element of the container to the given function and returns true if the function ever returns true for any element.

Any(func(key K, value T) bool) bool

All

Passes each element of the container to the given function and returns true if the function returns true for all elements.

All(func(key K, value T) bool) bool

Find

Passes each element of the container to the given function and returns the first (key,value) for which the function is true or nil,nil otherwise if no element matches the criteria.

Find(func(key K, value T) bool) (K, T)

Example:

package main

import (
	"fmt"
	"github.com/ugurcsen/gods-generic/maps/treemap"
)

func printMap(txt string, m *treemap.Map[string, int]) {
    fmt.Print(txt, " { ")
    m.Each(func(key string, value int) {
        fmt.Print(key, ":", value, " ")
    })
    fmt.Println("}")
}

// EunumerableWithKeyExample to demonstrate basic usage of EunumerableWithKey
func main() {
    m := treemap.NewWithStringComparator[int]()
    m.Put("g", 7)
    m.Put("f", 6)
    m.Put("e", 5)
    m.Put("d", 4)
    m.Put("c", 3)
    m.Put("b", 2)
    m.Put("a", 1)
    printMap("Initial", m) // { a:1 b:2 c:3 d:4 e:5 f:6 g:7 }
  
    even := m.Select(func(key string, value int) bool {
        return value%2 == 0
    })
    printMap("Elements with even values", even) // { b:2 d:4 f:6 }
  
    foundKey, foundValue := m.Find(func(key string, value int) bool {
        return value%2 == 0 && value%3 == 0
    })
    var empty string
    if foundKey != empty {
      fmt.Println("Element with value divisible by 2 and 3 found is", foundValue, "with key", foundKey) // value: 6, index: 4
    }
  
    square := m.Map(func(key string, value int) (string, int) {
        return key + key, value * value
    })
    printMap("Elements' values squared and letters duplicated", square) // { aa:1 bb:4 cc:9 dd:16 ee:25 ff:36 gg:49 }
  
    bigger := m.Any(func(key string, value int) bool {
        return value > 5
    })
    fmt.Println("Map contains element whose value is bigger than 5 is", bigger) // true
  
    positive := m.All(func(key string, value int) bool {
        return value > 0
    })
    fmt.Println("All map's elements have positive values is", positive) // true
  
    evenNumbersSquared := m.Select(func(key string, value int) bool {
        return value%2 == 0
    }).Map(func(key string, value int) (string, int) {
        return key, value * value
    })
    printMap("Chaining", evenNumbersSquared) // { b:4 d:16 f:36 }
}

Serialization

All data structures can be serialized (marshalled) and deserialized (unmarshalled). Currently, only JSON support is available.

JSONSerializer

Outputs the container into its JSON representation.

Typical usage for key-value structures:

package main

import (
	"encoding/json"
	"fmt"
	"github.com/ugurcsen/gods-generic/maps/hashmap"
)

func main() {
    m := hashmap.New[string, string]()
    m.Put("a", "1")
    m.Put("b", "2")
    m.Put("c", "3")
  
    // Serialization (marshalling)
    json, err := m.ToJSON()
    if err != nil {
      fmt.Println(err)
    }
    fmt.Println(string(json)) // {"a":"1","b":"2","c":"3"}
  
    // Deserialization (unmarshalling)
    json = []byte(`{"a":"1","b":"2"}`)
    err = m.FromJSON(json)
    if err != nil {
      fmt.Println(err)
    }
    fmt.Println(m) // HashMap {"a":"1","b":"2"}
}

Typical usage for value-only structures:

package main

import (
	"encoding/json"
	"fmt"
	"github.com/ugurcsen/gods-generic/lists/arraylist"
)

func main() {
	list := arraylist.New[string]()
	list.Add("a", "b", "c")

	bytes, err := json.Marshal(list) // Same as "list.ToJSON(list)"
	if err != nil {
		fmt.Println(err)
	}
	fmt.Println(string(bytes)) // ["a","b","c"]
}

JSONDeserializer

Populates the container with elements from the input JSON representation.

Typical usage for key-value structures:

package main

import (
	"encoding/json"
	"fmt"
	"github.com/ugurcsen/gods-generic/maps/hashmap"
)

func main() {
	hm := hashmap.New[string, string]()

	bytes := []byte(`{"a":"1","b":"2"}`)
	err := json.Unmarshal(bytes, &hm) // Same as "hm.FromJSON(bytes)"
	if err != nil {
		fmt.Println(err)
	}
	fmt.Println(hm) // HashMap map[b:2 a:1]
}

Typical usage for value-only structures:

package main

import (
	"encoding/json"
	"fmt"
	"github.com/ugurcsen/gods-generic/lists/arraylist"
)

func main() {
	list := arraylist.New[string]()

	bytes := []byte(`["a","b"]`)
	err := json.Unmarshal(bytes, &list) // Same as "list.FromJSON(bytes)"
	if err != nil {
		fmt.Println(err)
	}
	fmt.Println(list) // ArrayList ["a","b"]
}

Sort

Sort is a general purpose sort function.

Lists have an in-place Sort() function and all containers can return their sorted elements via containers.GetSortedValues() function.

Internally these all use the utils.Sort() method:

package main

import "github.com/ugurcsen/gods-generic/utils"

func main() {
	strings := []string{}                  // []
	strings = append(strings, "d")              // ["d"]
	strings = append(strings, "a")              // ["d","a"]
	strings = append(strings, "b")              // ["d","a",b"
	strings = append(strings, "c")              // ["d","a",b","c"]
	utils.Sort(strings, utils.StringComparator) // ["a","b","c","d"]
}

Container

Container specific operations:

// Returns sorted container''s elements with respect to the passed comparator.
// Does not affect the ordering of elements within the container.
func GetSortedValues[T comparable](container Container[T], comparator utils.Comparator[T]) []T

Usage:

package main

import (
	"github.com/ugurcsen/gods-generic/lists/arraylist"
	"github.com/ugurcsen/gods-generic/utils"
)

func main() {
	list := arraylist.New[int]()
	list.Add(2, 1, 3)
	values := GetSortedValues(list, utils.NumberComparator[int]) // [1, 2, 3]
}

Appendix

Motivation

Collections and data structures found in other languages: Java Collections, C++ Standard Template Library (STL) containers, Qt Containers, Ruby Enumerable etc.

Goals

Fast algorithms:

  • Based on decades of knowledge and experiences of other libraries mentioned above.

Memory efficient algorithms:

  • Avoiding to consume memory by using optimal algorithms and data structures for the given set of problems, e.g. red-black tree in case of TreeMap to avoid keeping redundant sorted array of keys in memory.

Easy to use library:

  • Well-structured library with minimalistic set of atomic operations from which more complex operations can be crafted.

Stable library:

  • Only additions are permitted keeping the library backward compatible.

Solid documentation and examples:

  • Learning by example.

Production ready:

  • Not used in production yet.

No dependencies:

  • No external imports.

There is often a tug of war between speed and memory when crafting algorithms. We choose to optimize for speed in most cases within reasonable limits on memory consumption.

Thread safety is not a concern of this project, this should be handled at a higher level.

Testing and Benchmarking

This takes a while, so test within sub-packages:

go test -run=NO_TEST -bench . -benchmem -benchtime 1s ./...

Non Generic version is https://github.com/emirpasic/gods

Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
ArrayList Get 100 96 ns/op 56,78 ns/op %69 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
ArrayList Get 1000 954,7 ns/op 522,8 ns/op %83 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
ArrayList Get 10000 9.563 ns/op 5.184 ns/op %84 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
ArrayList Get 100000 95.477 ns/op 50.836 ns/op %88 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
ArrayList Add 100 2.977 ns/op 567,9 ns/op %424 6.276 B/op 3.125 B/op %101 0 allocs/op 0 allocs/op %0
ArrayList Add 1000 24.379 ns/op 6.798 ns/op %259 45.458 B/op 23.602 B/op %93 744 allocs/op 0 allocs/op
ArrayList Add 10000 280.743 ns/op 51.363 ns/op %447 503.260 B/op 242.948 B/op %107 9.744 allocs/op 0 allocs/op
ArrayList Add 100000 3.542.995 ns/op 637.222 ns/op %456 6.921.637 B/op 2.378.902 B/op %191 99.744 allocs/op 0 allocs/op
ArrayList Remove 100 217,2 ns/op 250,7 ns/op -%13 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
ArrayList Remove 1000 2.092 ns/op 2.765 ns/op -%24 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
ArrayList Remove 10000 20.951 ns/op 25.810 ns/op -%19 1 B/op 0 B/op 0 allocs/op 0 allocs/op %0
ArrayList Remove 100000 4.765.332 ns/op 450.777 ns/op %957 3.328 B/op 129 B/op %2.480 0 allocs/op 0 allocs/op %0
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
DoublyLinkedList Get 100 1.508 ns/op 1.090 ns/op %38 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
DoublyLinkedList Get 1000 210.991 ns/op 201.415 ns/op %5 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
DoublyLinkedList Get 10000 28.638.542 ns/op 23.120.196 ns/op %24 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
DoublyLinkedList Get 100000 3.238.820.667 ns/op 2.441.314.958 ns/op %33 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
DoublyLinkedList Add 100 3.079 ns/op 2.632 ns/op %17 3.200 B/op 2.400 B/op %33 100 allocs/op 100 allocs/op %0
DoublyLinkedList Add 1000 40.018 ns/op 26.092 ns/op %53 37.952 B/op 24.000 B/op %58 1.744 allocs/op 1.000 allocs/op %74
DoublyLinkedList Add 10000 414.397 ns/op 253.128 ns/op %64 397.952 B/op 240.000 B/op %66 19.744 allocs/op 10.000 allocs/op %97
DoublyLinkedList Add 100000 4.097.912 ns/op 2.672.412 ns/op %53 3.997.952 B/op 2.400.000 B/op %67 199.744 allocs/op 100.000 allocs/op %100
DoublyLinkedList Remove 100 216,4 ns/op 215,9 ns/op %0 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
DoublyLinkedList Remove 1000 2.090 ns/op 2.071 ns/op %1 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
DoublyLinkedList Remove 10000 21.138 ns/op 20.824 ns/op %2 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
DoublyLinkedList Remove 100000 1.479.976.834 ns/op 634.645.521 ns/op %133 96 B/op 0 B/op 1 allocs/op 0 allocs/op
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
SinglyLinkedList Get 100 2.718 ns/op 2.434 ns/op %12 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
SinglyLinkedList Get 1000 443.806 ns/op 432.509 ns/op %3 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
SinglyLinkedList Get 10000 70.921.002 ns/op 48.080.932 ns/op %48 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
SinglyLinkedList Get 100000 5.487.166.668 ns/op 4.922.933.792 ns/op %11 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
SinglyLinkedList Add 100 3.423 ns/op 3.201 ns/op %7 2.400 B/op 1.600 B/op %50 100 allocs/op 100 allocs/op %0
SinglyLinkedList Add 1000 41.118 ns/op 23.598 ns/op %74 29.952 B/op 16.000 B/op %87 1.744 allocs/op 1.000 allocs/op %74
SinglyLinkedList Add 10000 392.871 ns/op 226.340 ns/op %74 317.952 B/op 160.000 B/op %99 19.744 allocs/op 10.000 allocs/op %97
SinglyLinkedList Add 100000 4.032.446 ns/op 2.336.021 ns/op %73 3.197.952 B/op 1.600.000 B/op %100 199.744 allocs/op 100.000 allocs/op %100
SinglyLinkedList Remove 100 217,9 ns/op 215,7 ns/op %1 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
SinglyLinkedList Remove 1000 2.093 ns/op 2.106 ns/op -%1 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
SinglyLinkedList Remove 10000 21.384 ns/op 21.316 ns/op %0 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
SinglyLinkedList Remove 100000 1.659.551.583 ns/op 1.497.199.208 ns/op %11 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
HashBidiMap Get 100 1.375 ns/op 606,8 ns/op %127 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashBidiMap Get 1000 10.147 ns/op 5.569 ns/op %82 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashBidiMap Get 10000 244.080 ns/op 177.146 ns/op %38 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashBidiMap Get 100000 2.973.754 ns/op 2.110.579 ns/op %41 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashBidiMap Put 100 10.123 ns/op 4.829 ns/op %110 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashBidiMap Put 1000 77.706 ns/op 36.435 ns/op %113 11.904 B/op 0 B/op 1.488 allocs/op 0 allocs/op
HashBidiMap Put 10000 1.518.899 ns/op 922.936 ns/op %65 155.904 B/op 0 B/op 19.488 allocs/op 0 allocs/op
HashBidiMap Put 100000 17.534.874 ns/op 10.306.088 ns/op %70 1.595.905 B/op 0 B/op 199.488 allocs/op 0 allocs/op
HashBidiMap Remove 100 503,6 ns/op 230,1 ns/op %119 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashBidiMap Remove 1000 4.962 ns/op 2.238 ns/op %122 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashBidiMap Remove 10000 49.393 ns/op 24.633 ns/op %101 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashBidiMap Remove 100000 499.347 ns/op 224.164 ns/op %123 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
HashMap Get 100 1.335 ns/op 605,8 ns/op %120 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashMap Get 1000 10.309 ns/op 5.415 ns/op %90 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashMap Get 10000 249.199 ns/op 163.026 ns/op %53 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashMap Get 100000 2.895.422 ns/op 2.025.766 ns/op %43 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashMap Put 100 2.425 ns/op 849,9 ns/op %185 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashMap Put 1000 19.716 ns/op 7.192 ns/op %174 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
HashMap Put 10000 370.781 ns/op 186.410 ns/op %99 77.952 B/op 0 B/op 9.744 allocs/op 0 allocs/op
HashMap Put 100000 4.207.168 ns/op 2.267.878 ns/op %86 797.955 B/op 0 B/op 99.744 allocs/op 0 allocs/op
HashMap Remove 100 494,2 ns/op 219,3 ns/op %125 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashMap Remove 1000 4.947 ns/op 2.100 ns/op %136 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashMap Remove 10000 47.827 ns/op 21.152 ns/op %126 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashMap Remove 100000 495.454 ns/op 209.361 ns/op %137 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
TreeBidiMap Get 100 1.773 ns/op 1.970 ns/op -%10 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
TreeBidiMap Get 1000 53.093 ns/op 48.321 ns/op %10 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
TreeBidiMap Get 10000 686.818 ns/op 572.178 ns/op %20 77.954 B/op 0 B/op 9.744 allocs/op 0 allocs/op
TreeBidiMap Get 100000 8.346.804 ns/op 6.604.697 ns/op %26 797.952 B/op 0 B/op 99.744 allocs/op 0 allocs/op
TreeBidiMap Put 100 23.555 ns/op 23.457 ns/op %0 9.600 B/op 6.400 B/op %50 200 allocs/op 200 allocs/op %0
TreeBidiMap Put 1000 339.843 ns/op 315.734 ns/op %8 107.904 B/op 64.000 B/op %69 3.488 allocs/op 2.000 allocs/op %74
TreeBidiMap Put 10000 4.118.347 ns/op 3.623.625 ns/op %14 1.115.920 B/op 640.004 B/op %74 39.488 allocs/op 20.000 allocs/op %97
TreeBidiMap Put 100000 44.971.067 ns/op 40.995.770 ns/op %10 11.195.917 B/op 6.400.010 B/op %75 399.488 allocs/op 200.000 allocs/op %100
TreeBidiMap Remove 100 389,3 ns/op 357,2 ns/op %9 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
TreeBidiMap Remove 1000 8.585 ns/op 3.510 ns/op %145 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
TreeBidiMap Remove 10000 99.369 ns/op 35.065 ns/op %183 77.952 B/op 0 B/op 9.744 allocs/op 0 allocs/op
TreeBidiMap Remove 100000 1.023.437 ns/op 354.091 ns/op %189 797.957 B/op 0 B/op 99.744 allocs/op 0 allocs/op
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
TreeMap Get 100 1.783 ns/op 2.024 ns/op -%12 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
TreeMap Get 1000 51.320 ns/op 48.677 ns/op %5 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
TreeMap Get 10000 683.409 ns/op 575.812 ns/op %19 77.954 B/op 0 B/op 9.744 allocs/op 0 allocs/op
TreeMap Get 100000 7.958.002 ns/op 6.489.285 ns/op %23 797.955 B/op 0 B/op 99.744 allocs/op 0 allocs/op
TreeMap Put 100 2.182 ns/op 2.155 ns/op %1 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
TreeMap Put 1000 58.258 ns/op 50.631 ns/op %15 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
TreeMap Put 10000 753.072 ns/op 662.433 ns/op %14 77.953 B/op 0 B/op 9.744 allocs/op 0 allocs/op
TreeMap Put 100000 9.180.666 ns/op 6.852.508 ns/op %34 797.956 B/op 0 B/op 99.744 allocs/op 0 allocs/op
TreeMap Remove 100 358,9 ns/op 325,6 ns/op %10 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
TreeMap Remove 1000 8.206 ns/op 3.191 ns/op %157 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
TreeMap Remove 10000 96.557 ns/op 31.861 ns/op %203 77.952 B/op 0 B/op 9.744 allocs/op 0 allocs/op
TreeMap Remove 100000 982.151 ns/op 320.021 ns/op %207 797.957 B/op 0 B/op 99.744 allocs/op 0 allocs/op
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
ArrayQueue Dequeue 100 218 ns/op 214,3 ns/op %2 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
ArrayQueue Dequeue 1000 2.522 ns/op 2.060 ns/op %22 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
ArrayQueue Dequeue 10000 26.175 ns/op 20.559 ns/op %27 1 B/op 0 B/op 0 allocs/op 0 allocs/op %0
ArrayQueue Dequeue 100000 1.448.044.834 ns/op 742.191 ns/op %195.004 699.008 B/op 250 B/op %279.503 8 allocs/op 0 allocs/op
ArrayQueue Enqueue 100 2.232 ns/op 497,3 ns/op %349 6.014 B/op 2.082 B/op %189 0 allocs/op 0 allocs/op %0
ArrayQueue Enqueue 1000 29.074 ns/op 8.659 ns/op %236 64.213 B/op 30.969 B/op %107 744 allocs/op 0 allocs/op
ArrayQueue Enqueue 10000 256.823 ns/op 72.981 ns/op %252 502.756 B/op 259.789 B/op %94 9.744 allocs/op 0 allocs/op
ArrayQueue Enqueue 100000 3.456.854 ns/op 742.063 ns/op %366 6.718.641 B/op 2.532.538 B/op %165 99.744 allocs/op 0 allocs/op
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
BinaryQueue Dequeue 100 219,3 ns/op 247,8 ns/op -%12 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
BinaryQueue Dequeue 1000 2.071 ns/op 2.594 ns/op -%20 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
BinaryQueue Dequeue 10000 20.551 ns/op 22.606 ns/op -%9 1 B/op 0 B/op 0 allocs/op 0 allocs/op %0
BinaryQueue Dequeue 100000 205.545 ns/op 257.967 ns/op -%20 126 B/op 66 B/op %91 0 allocs/op 0 allocs/op %0
BinaryQueue Enqueue 100 4.834 ns/op 1.549 ns/op %212 6.405 B/op 2.783 B/op %130 100 allocs/op 0 allocs/op
BinaryQueue Enqueue 1000 53.640 ns/op 13.898 ns/op %286 74.019 B/op 24.219 B/op %206 1.000 allocs/op 0 allocs/op
BinaryQueue Enqueue 10000 468.757 ns/op 133.306 ns/op %252 628.706 B/op 230.784 B/op %172 10.000 allocs/op 0 allocs/op
BinaryQueue Enqueue 100000 5.096.278 ns/op 1.323.769 ns/op %285 7.050.207 B/op 2.326.883 B/op %203 100.000 allocs/op 0 allocs/op
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
HashSet Contains 100 1.465 ns/op 708,4 ns/op %107 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashSet Contains 1000 10.611 ns/op 6.248 ns/op %70 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashSet Contains 10000 256.814 ns/op 179.416 ns/op %43 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashSet Contains 100000 2.877.410 ns/op 2.183.116 ns/op %32 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashSet Add 100 1.862 ns/op 724,7 ns/op %157 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashSet Add 1000 17.684 ns/op 6.263 ns/op %182 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
HashSet Add 10000 347.682 ns/op 195.879 ns/op %77 77.952 B/op 0 B/op 9.744 allocs/op 0 allocs/op
HashSet Add 100000 3.987.649 ns/op 2.363.547 ns/op %69 797.962 B/op 0 B/op 99.744 allocs/op 0 allocs/op
HashSet Remove 100 644,2 ns/op 295,3 ns/op %118 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
HashSet Remove 1000 6.391 ns/op 2.882 ns/op %122 46 B/op 10 B/op %360 0 allocs/op 0 allocs/op %0
HashSet Remove 10000 77.642 ns/op 30.941 ns/op %151 56.950 B/op 11.612 B/op %390 0 allocs/op 0 allocs/op %0
HashSet Remove 100000 26.227.605.125 ns/op 10.762.679.624 ns/op %144 80.403.460.904 B/op 40.397.527.296 B/op %99 100.057 allocs/op 101.802 allocs/op -%2
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
TreeSet Contains 100 1.844 ns/op 2.117 ns/op -%13 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
TreeSet Contains 1000 52.671 ns/op 50.012 ns/op %5 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
TreeSet Contains 10000 688.225 ns/op 571.616 ns/op %20 77.954 B/op 0 B/op 9.744 allocs/op 0 allocs/op
TreeSet Contains 100000 8.346.695 ns/op 6.569.518 ns/op %27 797.955 B/op 0 B/op 99.744 allocs/op 0 allocs/op
TreeSet Add 100 2.328 ns/op 2.265 ns/op %3 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
TreeSet Add 1000 58.447 ns/op 52.293 ns/op %12 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
TreeSet Add 10000 751.150 ns/op 606.855 ns/op %24 77.952 B/op 0 B/op 9.744 allocs/op 0 allocs/op
TreeSet Add 100000 8.659.309 ns/op 6.904.362 ns/op %25 797.955 B/op 0 B/op 99.744 allocs/op 0 allocs/op
TreeSet Remove 100 389,4 ns/op 389,5 ns/op -%0 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
TreeSet Remove 1000 8.524 ns/op 3.835 ns/op %122 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
TreeSet Remove 10000 100.427 ns/op 38.285 ns/op %162 77.952 B/op 0 B/op 9.744 allocs/op 0 allocs/op
TreeSet Remove 100000 1.013.442 ns/op 383.574 ns/op %164 797.956 B/op 0 B/op 99.744 allocs/op 0 allocs/op
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
ArrayStack Pop 100 228,3 ns/op 231 ns/op -%1 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
ArrayStack Pop 1000 2.125 ns/op 2.235 ns/op -%5 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
ArrayStack Pop 10000 20.972 ns/op 22.305 ns/op -%6 1 B/op 0 B/op 0 allocs/op 0 allocs/op %0
ArrayStack Pop 100000 219.957 ns/op 222.922 ns/op -%1 132 B/op 65 B/op %103 0 allocs/op 0 allocs/op %0
ArrayStack Push 100 2.362 ns/op 419,1 ns/op %464 6.116 B/op 1.683 B/op %263 0 allocs/op 0 allocs/op %0
ArrayStack Push 1000 26.772 ns/op 4.571 ns/op %486 57.667 B/op 28.212 B/op %104 744 allocs/op 0 allocs/op
ArrayStack Push 10000 249.355 ns/op 68.846 ns/op %262 474.070 B/op 257.870 B/op %84 9.744 allocs/op 0 allocs/op
ArrayStack Push 100000 3.144.425 ns/op 576.439 ns/op %445 6.559.482 B/op 2.453.667 B/op %167 99.744 allocs/op 0 allocs/op
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
LinkedListStack Pop 100 232,3 ns/op 262,4 ns/op -%11 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
LinkedListStack Pop 1000 2.246 ns/op 2.555 ns/op -%12 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
LinkedListStack Pop 10000 22.320 ns/op 25.690 ns/op -%13 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
LinkedListStack Pop 100000 223.584 ns/op 254.731 ns/op -%12 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
LinkedListStack Push 100 3.479 ns/op 3.145 ns/op %11 2.400 B/op 1.600 B/op %50 100 allocs/op 100 allocs/op %0
LinkedListStack Push 1000 37.550 ns/op 34.586 ns/op %9 29.952 B/op 16.000 B/op %87 1.744 allocs/op 1.000 allocs/op %74
LinkedListStack Push 10000 374.092 ns/op 226.045 ns/op %65 317.952 B/op 160.000 B/op %99 19.744 allocs/op 10.000 allocs/op %97
LinkedListStack Push 100000 3.930.625 ns/op 3.932.688 ns/op -%0 3.197.952 B/op 1.600.000 B/op %100 199.744 allocs/op 100.000 allocs/op %100
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
AVLTree Get 100 1.794 ns/op 1.735 ns/op %3 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
AVLTree Get 1000 52.251 ns/op 45.476 ns/op %15 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
AVLTree Get 10000 682.255 ns/op 553.651 ns/op %23 77.954 B/op 0 B/op 9.744 allocs/op 0 allocs/op
AVLTree Get 100000 7.930.279 ns/op 6.286.729 ns/op %26 797.956 B/op 0 B/op 99.744 allocs/op 0 allocs/op
AVLTree Put 100 2.729 ns/op 2.475 ns/op %10 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
AVLTree Put 1000 69.900 ns/op 63.906 ns/op %9 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
AVLTree Put 10000 850.449 ns/op 724.575 ns/op %17 77.952 B/op 0 B/op 9.744 allocs/op 0 allocs/op
AVLTree Put 100000 10.163.641 ns/op 8.392.132 ns/op %21 797.956 B/op 0 B/op 99.744 allocs/op 0 allocs/op
AVLTree Remove 100 320,5 ns/op 220,4 ns/op %45 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
AVLTree Remove 1000 7.265 ns/op 2.096 ns/op %247 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
AVLTree Remove 10000 85.562 ns/op 20.735 ns/op %313 77.952 B/op 0 B/op 9.744 allocs/op 0 allocs/op
AVLTree Remove 100000 871.629 ns/op 209.643 ns/op %316 797.956 B/op 0 B/op 99.744 allocs/op 0 allocs/op
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
BinaryHeap Pop 100 217,5 ns/op 219,8 ns/op -%1 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
BinaryHeap Pop 1000 2.097 ns/op 2.099 ns/op -%0 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
BinaryHeap Pop 10000 20.908 ns/op 20.907 ns/op %0 1 B/op 0 B/op 0 allocs/op 0 allocs/op %0
BinaryHeap Pop 100000 211.406 ns/op 213.072 ns/op -%1 124 B/op 62 B/op %100 0 allocs/op 0 allocs/op %0
BinaryHeap Push 100 3.129 ns/op 1.344 ns/op %133 4.916 B/op 2.443 B/op %101 0 allocs/op 0 allocs/op %0
BinaryHeap Push 1000 31.756 ns/op 12.078 ns/op %163 38.026 B/op 21.049 B/op %81 744 allocs/op 0 allocs/op
BinaryHeap Push 10000 337.796 ns/op 113.516 ns/op %198 418.223 B/op 214.722 B/op %95 9.744 allocs/op 0 allocs/op
BinaryHeap Push 100000 3.836.439 ns/op 1.131.129 ns/op %239 4.327.811 B/op 2.008.788 B/op %115 99.744 allocs/op 0 allocs/op
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
BTree Get 100 2.192 ns/op 2.088 ns/op %5 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
BTree Get 1000 67.574 ns/op 60.504 ns/op %12 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
BTree Get 10000 799.961 ns/op 692.648 ns/op %15 77.954 B/op 0 B/op 9.744 allocs/op 0 allocs/op
BTree Get 100000 8.812.033 ns/op 7.600.964 ns/op %16 797.957 B/op 0 B/op 99.744 allocs/op 0 allocs/op
BTree Put 100 6.049 ns/op 3.893 ns/op %55 3.200 B/op 1.600 B/op %100 100 allocs/op 100 allocs/op %0
BTree Put 1000 91.949 ns/op 70.728 ns/op %30 37.952 B/op 16.000 B/op %137 1.744 allocs/op 1.000 allocs/op %74
BTree Put 10000 1.017.101 ns/op 788.238 ns/op %29 397.958 B/op 160.001 B/op %149 19.744 allocs/op 10.000 allocs/op %97
BTree Put 100000 11.689.052 ns/op 8.940.382 ns/op %31 3.997.973 B/op 1.600.003 B/op %150 199.744 allocs/op 100.000 allocs/op %100
BTree Remove 100 389 ns/op 231,4 ns/op %68 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
BTree Remove 1000 8.517 ns/op 2.235 ns/op %281 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
BTree Remove 10000 99.440 ns/op 22.802 ns/op %336 77.952 B/op 0 B/op 9.744 allocs/op 0 allocs/op
BTree Remove 100000 1.019.614 ns/op 224.342 ns/op %354 797.961 B/op 0 B/op 99.744 allocs/op 0 allocs/op
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
RedBlackTree Get 100 1.914 ns/op 1.906 ns/op %0 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
RedBlackTree Get 1000 52.516 ns/op 47.911 ns/op %10 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
RedBlackTree Get 10000 691.151 ns/op 564.442 ns/op %22 77.954 B/op 0 B/op 9.744 allocs/op 0 allocs/op
RedBlackTree Get 100000 8.007.029 ns/op 6.396.226 ns/op %25 797.956 B/op 0 B/op 99.744 allocs/op 0 allocs/op
RedBlackTree Put 100 2.354 ns/op 2.057 ns/op %14 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
RedBlackTree Put 1000 58.733 ns/op 51.150 ns/op %15 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
RedBlackTree Put 10000 752.802 ns/op 594.066 ns/op %27 77.953 B/op 0 B/op 9.744 allocs/op 0 allocs/op
RedBlackTree Put 100000 9.052.725 ns/op 7.033.469 ns/op %29 797.954 B/op 0 B/op 99.744 allocs/op 0 allocs/op
RedBlackTree Remove 100 357,7 ns/op 265,1 ns/op %35 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
RedBlackTree Remove 1000 8.245 ns/op 2.586 ns/op %219 5.952 B/op 0 B/op 744 allocs/op 0 allocs/op
RedBlackTree Remove 10000 97.490 ns/op 25.482 ns/op %283 77.952 B/op 0 B/op 9.744 allocs/op 0 allocs/op
RedBlackTree Remove 100000 990.313 ns/op 255.761 ns/op %287 797.955 B/op 0 B/op 99.744 allocs/op 0 allocs/op
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
GoSortRandom 0,015 ns/op 0,013 ns/op %9 0 B/op 0 B/op %0 0 allocs/op 0 allocs/op %0
Benchmarks Non Generic Generic Gain Non Generic Generic Gain Non Generic Generic Gain
Averages 484.677.830,044 ns/op 158.477.047,019 ns/op %206 816.695.882,091 B/op 410.270.167,112 B/op %99 22.310,80 allocs/op 4.416,76 allocs/op %405

Contributing

Biggest contribution towards this library is to use it and give us feedback for further improvements and additions.

For direct contributions, pull request into master branch or ask to become a contributor.

Coding style:

# Install tooling and set path:
go install gotest.tools/gotestsum@latest
go install golang.org/x/lint/golint@latest
go install github.com/kisielk/errcheck@latest
export PATH=$PATH:$GOPATH/bin

# Fix errors and warnings:
go fmt ./... &&
go test -v ./... && 
golint -set_exit_status ./... && 
! go fmt ./... 2>&1 | read &&
go vet -v ./... &&
gocyclo -avg -over 15 ../gods &&
errcheck ./...

License

This library is distributed under the BSD-style license found in the LICENSE file.