-
Notifications
You must be signed in to change notification settings - Fork 45.5k
Description
I am using tesorflow version 1.2 (gpu)
i try to run tensorflow chatbot which is a varient of translate example . fixed many problems due to version change ,but can't fix this error
Traceback (most recent call last): File "C:\Users\win-7\Downloads\tensorflow_chatbot-master\new\execute.py", line 319, in <module> train() File "C:\Users\win-7\Downloads\tensorflow_chatbot-master\new\execute.py", line 137, in train model = create_model(sess, False) File "C:\Users\win-7\Downloads\tensorflow_chatbot-master\new\execute.py", line 104, in create_model model = seq2seq_model.Seq2SeqModel( gConfig['enc_vocab_size'], gConfig['dec_vocab_size'], _buckets, gConfig['layer_size'], gConfig['num_layers'], gConfig['max_gradient_norm'], gConfig['batch_size'], gConfig['learning_rate'], gConfig['learning_rate_decay_factor'], forward_only=forward_only) File "C:\Users\win-7\Downloads\tensorflow_chatbot-master\new\seq2seq_model.py", line 150, in __init__ softmax_loss_function=softmax_loss_function) File "C:\Python35\lib\site-packages\tensorflow\contrib\legacy_seq2seq\python\ops\seq2seq.py", line 1221, in model_with_buckets softmax_loss_function=softmax_loss_function)) File "C:\Python35\lib\site-packages\tensorflow\contrib\legacy_seq2seq\python\ops\seq2seq.py", line 1134, in sequence_loss softmax_loss_function=softmax_loss_function)) File "C:\Python35\lib\site-packages\tensorflow\contrib\legacy_seq2seq\python\ops\seq2seq.py", line 1089, in sequence_loss_by_example crossent = softmax_loss_function(labels=target, logits=logit) TypeError: sampled_loss() got an unexpected keyword argument 'logits'
error causing line of code
self.outputs, self.losses = tf.contrib.legacy_seq2seq.model_with_buckets( self.encoder_inputs, self.decoder_inputs, targets, self.target_weights, buckets, lambda x, y: seq2seq_f(x, y, False), softmax_loss_function=softmax_loss_function)
<-- line 150 from seq2seq.py
and softmax_loss_function is come from here
def sampled_loss(inputs, labels): labels = tf.reshape(labels, [-1, 1]) return tf.nn.sampled_softmax_loss(w_t, b, labels, inputs, num_samples, self.target_vocab_size) softmax_loss_function = sampled_loss
please help