Skip to content

Official Repository for the paper "Unsupervised Visual Representation Learning via Mutual Information Regularized Assignment" NeurIPS 2022

Notifications You must be signed in to change notification settings

movinghoon/MIRA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MIRA (PyTorch)

Official PyTorch implementation of
Unsupervised Visual Representation Learning via Mutual Information Regularized Assignment
Dong Hoon Lee, Sungik Choi, Hyunwoo Kim, Sae-Young Chung
NeurIPS 2022

Requirements

  • torch==1.11.0
  • torchvision==0.12.0
  • nvidia-dali-cuda110==1.12.0 (optional)
  • tqdm
  • wandb

We also include environment.yaml for conda environment.

Pretraining

python -m torch.distributed.launch --nproc_per_node=16 train.py --data-dir $DATA_DIR --entity $WANDB_ENTITY --project $WANDB_PROJECT 

Evaluation

Linear evaluation on ImageNet

python -m torch.distributed.launch --nproc_per_node=16 eval_linear.py $MODEL --data-dir $DATA_DIR --entity $WANDB_ENTITY --project $WANDB_PROJECT

Pretrained weights on ImageNet-1k

method arch batch-size epochs multi-crop linear eval download script
MIRA RN-50 4096 800 2x224 74.1 model script
MIRA RN-50 4096 400 2x224 + 6x96 75.6 model script

Acknowledgement

Our implementation uses code from the following repositories: DINO, SwAV MoCo-v3, VISSL, and solo-learn

Citation

If you find our work useful, please consider citing it:

@inproceedings{lee2022mira,
    title={Unsupervised Visual Representation Learning via Mutual Information Regularized Assignment},
    author={Lee, Dong Hoon and Choi, Sungik and Kim, Hyunwoo and Chung, Sae-Young},
    booktitle={Advances in Neural Information Processing Systems},
    year={2022}
}

About

Official Repository for the paper "Unsupervised Visual Representation Learning via Mutual Information Regularized Assignment" NeurIPS 2022

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages