Official PyTorch implementation of
Unsupervised Visual Representation Learning via Mutual Information Regularized Assignment
Dong Hoon Lee, Sungik Choi, Hyunwoo Kim, Sae-Young Chung
NeurIPS 2022
torch==1.11.0torchvision==0.12.0nvidia-dali-cuda110==1.12.0(optional)tqdmwandb
We also include environment.yaml for conda environment.
python -m torch.distributed.launch --nproc_per_node=16 train.py --data-dir $DATA_DIR --entity $WANDB_ENTITY --project $WANDB_PROJECT
python -m torch.distributed.launch --nproc_per_node=16 eval_linear.py $MODEL --data-dir $DATA_DIR --entity $WANDB_ENTITY --project $WANDB_PROJECT
| method | arch | batch-size | epochs | multi-crop | linear eval | download | script |
|---|---|---|---|---|---|---|---|
| MIRA | RN-50 | 4096 | 800 | 2x224 | 74.1 | model | script |
| MIRA | RN-50 | 4096 | 400 | 2x224 + 6x96 | 75.6 | model | script |
Our implementation uses code from the following repositories: DINO, SwAV MoCo-v3, VISSL, and solo-learn
If you find our work useful, please consider citing it:
@inproceedings{lee2022mira,
title={Unsupervised Visual Representation Learning via Mutual Information Regularized Assignment},
author={Lee, Dong Hoon and Choi, Sungik and Kim, Hyunwoo and Chung, Sae-Young},
booktitle={Advances in Neural Information Processing Systems},
year={2022}
}