Skip to content

mala-project/test-data

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Test data for MALA

This repository contains data to test, develop and debug MALA and MALA based runscripts. If you plan to do machine-learning tests ("Does this network implementation work? Is this new data loading strategy working?"), this is the right data to test with. It is NOT production level data!

Be2

Contains DFT calculation output from a QuantumEspresso calculation for a beryllium cell with 2 atoms, along with input scripts and pseudopotential to replicate this calculation. LDOS files are usually large, therefore this reduced example samples the LDOS somewhat inaccurately, in order to reduce storage size. The energy grid for the LDOS is 11 entries long, starting at -5 eV with a spacing of 2.5 eV. For LDOS and descriptors, 4 snapshots are contained. In detail, the following data files can be found:

File Name Description
recreate_data/ Input scripts for QE
cubes/ .cube files for the local density of states
Be.pbe-n-rrkjus_psl.1.0.0.UPF Pseudopotential used for the QE calculation
Be_snapshot0.dens.npy Electronic density numpy array (snapshot 0)
Be_snapshot.dens.h5 Electronic density (HDF5 format, see details below)
Be_snapshot0.dos.npy Density of states numpy array (snapshot 0)
Be_snapshot0-3.out Output file of QE. calculation
Be_snapshot0-3.in.npy Bispectrum descriptors numpy array
Be_snapshot0-3.out.npy Local density of states numpy array
Be_snapshot0-3.in.h5 Bispectrum descriptors (HDF5 format)
Be_snapshot0-3.out.h5 Local density of states (HDF5 format)

numpy format files

SNAP bispectrum descriptors of length 91 on 18 x 18 x 27 real space grid.

Note

In the last dimension of length 94, the first 3 entries are the grid coordinates / indices (an artifact of the SNAP vector generation). The actual features are snap_array[..., 3:].

>>> np.load('Be2/Be_snapshot1.in.npy').shape
(18, 18, 27, 94)

LDOS (11 points) on 18 x 18 x 27 real space grid.

>>> np.load('Be2/Be_snapshot1.out.npy').shape
(18, 18, 27, 11)

Density of states (only provided for snapshot 0):

>>> np.load('Be2/Be_snapshot0.dos.npy').shape
(11,)

Density for snapshot 0 on a 18 x 18 x 27 real space grid. The extra dimension can be ignored, i.e. use d=np.load(...); d[..., -1] to squeeze the shape to (18, 18, 27).

>>> np.load('Be2/Be_snapshot0.dens.npy').shape
(18, 18, 27, 1)

openPMD-based files

MALA supports the openPMD format, so we also provide data in that format here.

$ h5ls -r Be_snapshot0.in.h5 | grep Dataset | sort -V
/data/0/meshes/Bispectrum/0  Dataset {18, 18, 27}
/data/0/meshes/Bispectrum/1  Dataset {18, 18, 27}
...
/data/0/meshes/Bispectrum/93 Dataset {18, 18, 27}

$ h5ls -r Be_snapshot0.out.h5 | grep Dataset | sort -V
/data/0/meshes/LDOS/0     Dataset {18, 18, 27}
/data/0/meshes/LDOS/1     Dataset {18, 18, 27}
...
/data/0/meshes/LDOS/10    Dataset {18, 18, 27}

For the density, the snapshot number 0 is encoded in the name /data/0.

$ h5ls -r Be_snapshot.dens.h5 | grep Dataset
/data/0/meshes/Density/0 Dataset {18, 18, 27}

To understand the naming scheme, we can use openPMD's introspection tool:

$ openpmd-ls Be_snapshot.dens.h5
openPMD series: Be_snapshot.dens
openPMD standard: 1.1.0
openPMD extensions: 0

data author: ...
data created: 2023-05-23 15:37:18 +0200
data backend: HDF5
generating machine: unknown
generating software: MALA (version: 1.1.0)
generating software dependencies: unknown

number of iterations: 1 (groupBased)
  all iterations: 0

number of meshes: 1
  all meshes:
    Density

number of particle species: 0

So /data/0/ is the openPMD iteration counter, which we use to name snapshots. Density/0 is one grid / array / Dataset (in hdf terms) / mesh (in openPMD terms) of shape 18 x 18 x 27. Multiple snapshots in one file would be called

/data/0/meshes/Density/0     Dataset {18, 18, 27}
/data/1/meshes/Density/0     Dataset {18, 18, 27}
/data/2/meshes/Density/0     Dataset {18, 18, 27}
...

workflow_test/

Contains the saved parameters, network and input/output scaler for a run of MALA example 01. With these the correct loading of a checkpoint in MALA can be confirmed, i.e. the workflow can be checked.