1
- # U-Net and AutoEncoder Repository
1
+ # Image Segmentation Repository
2
2
3
3
## Overview
4
4
5
- This repository contains implementations for:
5
+ This repository contains implementations for image segmentation models :
6
6
7
- 1 . ** U-Net ** : A semantic segmentation model with training and inference capabilities .
8
- 2 . ** U-Net_v2** : An improved version of U-Net with a better structure, recommended for use .
9
- 3 . ** AutoEncoder ** : Includes both vanilla and CNN-based autoencoder implementations .
7
+ 1 . ** U-Net_v1 ** : The original U-Net implementation for semantic segmentation .
8
+ 2 . ** U-Net_v2** : An improved version of U-Net with a better structure and enhanced functionality .
9
+ 3 . ** FineTune_Deeplabv3 ** : A fine-tuned implementation of the DeepLabv3 model for advanced segmentation tasks .
10
10
11
11
## Structure
12
12
13
13
```
14
14
/U_NET/
15
- ├── U_Net/ # Original U-Net implementation
15
+ ├── U_Net_v1/ # Original U-Net implementation
16
16
│ ├── models/ # Model architecture, training, and inference scripts
17
17
│ └── data/ # Dataset for training and testing
18
18
├── U_Net_v2/ # Improved U-Net implementation
19
19
│ ├── scripts/ # Training, inference, and preprocessing scripts
20
20
│ └── params/ # Configuration files for training and inference
21
- ├── Auto_Encoder / # AutoEncoder implementations
22
- │ ├── vanilla_autoencoder / # Vanilla autoencoder
23
- │ └── cnn-autoencoder / # CNN-based autoencoder
21
+ ├── FineTune_Deeplabv3 / # Fine-tuned DeepLabv3 implementation
22
+ │ ├── scripts / # Training and inference scripts
23
+ │ └── configs / # Configuration files for fine-tuning
24
24
└── Readme.md # Repository documentation
25
25
```
26
26
27
27
## Recommendations
28
28
29
- - ** For Semantic Segmentation** : Use ` U_Net_v2 ` as it has a better structure and improved functionality compared to the original ` U_Net ` .
30
- - ** For AutoEncoding Tasks** : Explore the ` Auto_Encoder ` folder for vanilla and CNN-based autoencoder implementations.
29
+ - ** For Basic Semantic Segmentation** : Use ` U_Net_v1 ` for a straightforward implementation.
30
+ - ** For Improved Segmentation** : Use ` U_Net_v2 ` for better performance and functionality.
31
+ - ** For Advanced Segmentation** : Use ` FineTune_Deeplabv3 ` for state-of-the-art results.
31
32
32
33
## Usage
33
34
35
+ ### U-Net_v1
36
+
37
+ - ** Training** : Refer to the ` models/ ` folder for training scripts.
38
+ - ** Inference** : Use the provided inference scripts in the ` models/ ` folder.
39
+
34
40
### U-Net_v2
35
41
36
- - ** Training** : Use the ` train.py ` script in ` U_Net_v2/scripts/src/ ` .
37
- - ** Inference** : Use the ` inference.py ` script in ` U_Net_v2/scripts/src/ ` .
42
+ - ** Training** : Use the ` train.py ` script in ` U_Net_v2/scripts/ ` .
43
+ - ** Inference** : Use the ` inference.py ` script in ` U_Net_v2/scripts/ ` .
38
44
39
- ### AutoEncoder
45
+ ### FineTune_Deeplabv3
40
46
41
- - ** Vanilla AutoEncoder ** : Refer to the ` vanilla_autoencoder ` folder .
42
- - ** CNN AutoEncoder ** : Refer to the ` cnn-autoencoder ` folder .
47
+ - ** Training ** : Use the training scripts in ` FineTune_Deeplabv3/scripts/ ` .
48
+ - ** Inference ** : Use the inference scripts in ` FineTune_Deeplabv3/scripts/ ` .
43
49
44
50
## License
45
51
@@ -48,4 +54,5 @@ This repository contains implementations for:
48
54
## Acknowledgements
49
55
50
56
- U-Net architecture: [ Ronneberger et al., 2015] ( https://arxiv.org/abs/1505.04597 )
57
+ - DeepLabv3: [ Chen et al., 2017] ( https://arxiv.org/abs/1706.05587 )
51
58
- [ Any other acknowledgements]
0 commit comments