Skip to content

Commit d69a5cd

Browse files
committed
edit readme
1 parent e4678f4 commit d69a5cd

File tree

1 file changed

+23
-16
lines changed

1 file changed

+23
-16
lines changed

Readme.md

Lines changed: 23 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -1,45 +1,51 @@
1-
# U-Net and AutoEncoder Repository
1+
# Image Segmentation Repository
22

33
## Overview
44

5-
This repository contains implementations for:
5+
This repository contains implementations for image segmentation models:
66

7-
1. **U-Net**: A semantic segmentation model with training and inference capabilities.
8-
2. **U-Net_v2**: An improved version of U-Net with a better structure, recommended for use.
9-
3. **AutoEncoder**: Includes both vanilla and CNN-based autoencoder implementations.
7+
1. **U-Net_v1**: The original U-Net implementation for semantic segmentation.
8+
2. **U-Net_v2**: An improved version of U-Net with a better structure and enhanced functionality.
9+
3. **FineTune_Deeplabv3**: A fine-tuned implementation of the DeepLabv3 model for advanced segmentation tasks.
1010

1111
## Structure
1212

1313
```
1414
/U_NET/
15-
├── U_Net/ # Original U-Net implementation
15+
├── U_Net_v1/ # Original U-Net implementation
1616
│ ├── models/ # Model architecture, training, and inference scripts
1717
│ └── data/ # Dataset for training and testing
1818
├── U_Net_v2/ # Improved U-Net implementation
1919
│ ├── scripts/ # Training, inference, and preprocessing scripts
2020
│ └── params/ # Configuration files for training and inference
21-
├── Auto_Encoder/ # AutoEncoder implementations
22-
│ ├── vanilla_autoencoder/ # Vanilla autoencoder
23-
│ └── cnn-autoencoder/ # CNN-based autoencoder
21+
├── FineTune_Deeplabv3/ # Fine-tuned DeepLabv3 implementation
22+
│ ├── scripts/ # Training and inference scripts
23+
│ └── configs/ # Configuration files for fine-tuning
2424
└── Readme.md # Repository documentation
2525
```
2626

2727
## Recommendations
2828

29-
- **For Semantic Segmentation**: Use `U_Net_v2` as it has a better structure and improved functionality compared to the original `U_Net`.
30-
- **For AutoEncoding Tasks**: Explore the `Auto_Encoder` folder for vanilla and CNN-based autoencoder implementations.
29+
- **For Basic Semantic Segmentation**: Use `U_Net_v1` for a straightforward implementation.
30+
- **For Improved Segmentation**: Use `U_Net_v2` for better performance and functionality.
31+
- **For Advanced Segmentation**: Use `FineTune_Deeplabv3` for state-of-the-art results.
3132

3233
## Usage
3334

35+
### U-Net_v1
36+
37+
- **Training**: Refer to the `models/` folder for training scripts.
38+
- **Inference**: Use the provided inference scripts in the `models/` folder.
39+
3440
### U-Net_v2
3541

36-
- **Training**: Use the `train.py` script in `U_Net_v2/scripts/src/`.
37-
- **Inference**: Use the `inference.py` script in `U_Net_v2/scripts/src/`.
42+
- **Training**: Use the `train.py` script in `U_Net_v2/scripts/`.
43+
- **Inference**: Use the `inference.py` script in `U_Net_v2/scripts/`.
3844

39-
### AutoEncoder
45+
### FineTune_Deeplabv3
4046

41-
- **Vanilla AutoEncoder**: Refer to the `vanilla_autoencoder` folder.
42-
- **CNN AutoEncoder**: Refer to the `cnn-autoencoder` folder.
47+
- **Training**: Use the training scripts in `FineTune_Deeplabv3/scripts/`.
48+
- **Inference**: Use the inference scripts in `FineTune_Deeplabv3/scripts/`.
4349

4450
## License
4551

@@ -48,4 +54,5 @@ This repository contains implementations for:
4854
## Acknowledgements
4955

5056
- U-Net architecture: [Ronneberger et al., 2015](https://arxiv.org/abs/1505.04597)
57+
- DeepLabv3: [Chen et al., 2017](https://arxiv.org/abs/1706.05587)
5158
- [Any other acknowledgements]

0 commit comments

Comments
 (0)