|
| 1 | +import os |
| 2 | +import time |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +from PIL import Image |
| 6 | +import re |
| 7 | +import warnings |
| 8 | + |
| 9 | +from dataset_loaders.parallel_loader import ThreadedDataset |
| 10 | +from parallel_loader_1D import ThreadedDataset_1D |
| 11 | + |
| 12 | +floatX = 'float32' |
| 13 | + |
| 14 | +class Cortical6LayersDataset(ThreadedDataset_1D): |
| 15 | + '''The Cortical Layers Dataset. |
| 16 | + Parameters |
| 17 | + ---------- |
| 18 | + which_set: string |
| 19 | + A string in ['train', 'val', 'valid', 'test'], corresponding to |
| 20 | + the set to be returned. |
| 21 | + split: float |
| 22 | + A float indicating the dataset split between training and validation. |
| 23 | + For example, if split=0.85, 85\% of the images will be used for training, |
| 24 | + whereas 15\% will be used for validation. |
| 25 | + ''' |
| 26 | + name = 'cortical_layers' |
| 27 | + |
| 28 | + non_void_nclasses = 7 |
| 29 | + GTclasses = [0, 1, 2, 3, 4, 5, 6] |
| 30 | + _cmap = { |
| 31 | + 0: (128, 128, 128), # padding |
| 32 | + 1: (128, 0, 0), # layer 1 |
| 33 | + 2: (128, 64, ), # layer 2 |
| 34 | + 3: (128, 64, 128), # layer 3 |
| 35 | + 4: (0, 0, 128), # layer 4 |
| 36 | + 5: (0, 0, 64), # layer 5 |
| 37 | + 6: (64, 64, 128), # layer 6 |
| 38 | + } |
| 39 | + _mask_labels = {0: 'padding', 1: 'layers1', 2: 'layer2', 3: 'layer3', |
| 40 | + 4: 'layer4', 5: 'layer5', 6: 'layer6'} |
| 41 | + _void_labels = [] |
| 42 | + |
| 43 | + |
| 44 | + _filenames = None |
| 45 | + |
| 46 | + @property |
| 47 | + def filenames(self): |
| 48 | + |
| 49 | + if self._filenames is None: |
| 50 | + # Load filenames |
| 51 | + nfiles = sum(1 for line in open(self.mask_path)) |
| 52 | + filenames = range(nfiles) |
| 53 | + np.random.seed(1609) |
| 54 | + np.random.shuffle(filenames) |
| 55 | + |
| 56 | + if self.which_set == 'train': |
| 57 | + filenames = filenames[:int(nfiles*self.split)] |
| 58 | + elif self.which_set == 'val': |
| 59 | + filenames = filenames[-(nfiles - int(nfiles*self.split)):] |
| 60 | + |
| 61 | + # Save the filenames list |
| 62 | + self._filenames = filenames |
| 63 | + |
| 64 | + return self._filenames |
| 65 | + |
| 66 | + def __init__(self, |
| 67 | + which_set="train", |
| 68 | + split=0.85, |
| 69 | + shuffle_at_each_epoch = True, |
| 70 | + smooth_or_raw = 'both', |
| 71 | + *args, **kwargs): |
| 72 | + |
| 73 | + self.task = 'segmentation' |
| 74 | + |
| 75 | + self.n_layers = 6 |
| 76 | + n_layers_path = str(self.n_layers)+"layers_segmentation" |
| 77 | + |
| 78 | + self.which_set = "val" if which_set == "valid" else which_set |
| 79 | + if self.which_set not in ("train", "val", 'test'): |
| 80 | + raise ValueError("Unknown argument to which_set %s" % |
| 81 | + self.which_set) |
| 82 | + |
| 83 | + self.split = split |
| 84 | + |
| 85 | + self.image_path_raw = os.path.join(self.path,n_layers_path,"training_raw.txt") |
| 86 | + self.image_path_smooth = os.path.join(self.path,n_layers_path, "training_geo.txt") |
| 87 | + self.mask_path = os.path.join(self.path,n_layers_path, "training_cls.txt") |
| 88 | + self.regions_path = os.path.join(self.path, n_layers_path, "training_regions.txt") |
| 89 | + |
| 90 | + self.smooth_raw_both = smooth_or_raw |
| 91 | + |
| 92 | + if smooth_or_raw == 'both': |
| 93 | + self.data_shape = (200,2) |
| 94 | + else : |
| 95 | + self.data_shape = (200,1) |
| 96 | + |
| 97 | + super(Cortical6LayersDataset, self).__init__(*args, **kwargs) |
| 98 | + |
| 99 | + def get_names(self): |
| 100 | + """Return a dict of names, per prefix/subset.""" |
| 101 | + |
| 102 | + return {'default': self.filenames} |
| 103 | + |
| 104 | + |
| 105 | + |
| 106 | +def test_6layers(): |
| 107 | + train_iter = Cortical6LayersDataset( |
| 108 | + which_set='train', |
| 109 | + smooth_or_raw = 'both', |
| 110 | + batch_size=500, |
| 111 | + data_augm_kwargs={}, |
| 112 | + return_one_hot=False, |
| 113 | + return_01c=False, |
| 114 | + return_list=True, |
| 115 | + use_threads=False) |
| 116 | + |
| 117 | + valid_iter = Cortical6LayersDataset( |
| 118 | + which_set='valid', |
| 119 | + smooth_or_raw = 'smooth', |
| 120 | + batch_size=500, |
| 121 | + data_augm_kwargs={}, |
| 122 | + return_one_hot=False, |
| 123 | + return_01c=False, |
| 124 | + return_list=True, |
| 125 | + use_threads=False) |
| 126 | + |
| 127 | + valid_iter2 = Cortical6LayersDataset( |
| 128 | + which_set='valid', |
| 129 | + smooth_or_raw = 'raw', |
| 130 | + batch_size=500, |
| 131 | + data_augm_kwargs={}, |
| 132 | + return_one_hot=False, |
| 133 | + return_01c=False, |
| 134 | + return_list=True, |
| 135 | + use_threads=False) |
| 136 | + |
| 137 | + |
| 138 | + |
| 139 | + train_nsamples = train_iter.nsamples |
| 140 | + train_nbatches = train_iter.nbatches |
| 141 | + valid_nbatches = valid_iter.nbatches |
| 142 | + valid_nbatches2 = valid_iter2.nbatches |
| 143 | + |
| 144 | + |
| 145 | + |
| 146 | + # Simulate training |
| 147 | + max_epochs = 1 |
| 148 | + print "Simulate training for", str(max_epochs), "epochs" |
| 149 | + start_training = time.time() |
| 150 | + for epoch in range(max_epochs): |
| 151 | + print "Epoch #", str(epoch) |
| 152 | + |
| 153 | + start_epoch = time.time() |
| 154 | + |
| 155 | + print "Iterate on the training set", train_nbatches, "minibatches" |
| 156 | + for mb in range(train_nbatches): |
| 157 | + start_batch = time.time() |
| 158 | + batch = train_iter.next() |
| 159 | + if mb%5 ==0: |
| 160 | + print("Minibatch train {}: {} sec".format(mb, (time.time() - |
| 161 | + start_batch))) |
| 162 | + |
| 163 | + print "Iterate on the validation set", valid_nbatches, "minibatches" |
| 164 | + for mb in range(valid_nbatches): |
| 165 | + start_batch = time.time() |
| 166 | + batch = valid_iter.next() |
| 167 | + if mb%5 ==0: |
| 168 | + print("Minibatch valid {}: {} sec".format(mb, (time.time() - |
| 169 | + start_batch))) |
| 170 | + |
| 171 | + print "Iterate on the validation set (second time)", valid_nbatches2, "minibatches" |
| 172 | + for mb in range(valid_nbatches2): |
| 173 | + start_batch = time.time() |
| 174 | + batch = valid_iter2.next() |
| 175 | + if mb%5==0: |
| 176 | + print("Minibatch valid {}: {} sec".format(mb, (time.time() - |
| 177 | + start_batch))) |
| 178 | + |
| 179 | + print("Epoch time: %s" % str(time.time() - start_epoch)) |
| 180 | + print("Training time: %s" % str(time.time() - start_training)) |
| 181 | + |
| 182 | +if __name__ == '__main__': |
| 183 | + print "Loading the dataset 1 batch at a time" |
| 184 | + test_6layers() |
| 185 | + print "Success!" |
0 commit comments