Skip to content

jiaowoguanren0615/STL-Pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Self-emerging Token Labeling (STL)

This is a warehouse for STL-Pytorch-model, can be used to train your image-datasets for vision tasks.
The code mainly comes from official source code.

Preparation

Download fan & hybrid fan models pretrained_weights

pretrained_weights_website

Download the dataset:

flower_dataset.

Project Structure

├── datasets: Load datasets
    ├── my_dataset.py: Customize reading data sets and define transforms data enhancement methods
    ├── split_data.py: Define the function to read the image dataset and divide the training-set and test-set
    ├── threeaugment.py: Additional data augmentation methods
├── models: Fan & hybrid-Fan Model
    ├── convnext_utils.py: Construct convnext models
    ├── fan.py: Construct fan models, inculding convnext & swin models
    ├── swin_utils.py: Construct swin_transformer & hybrid-swin_transformer model
├── util:
    ├── engine.py: Function code for a training/validation process
    ├── losses.py: Knowledge distillation loss, combined with teacher model (if any)
    ├── optimizer.py: Define Sophia optimizer
    ├── samplers.py: Define the parameter of "sampler" in DataLoader
    ├── utils.py: Record various indicator information and output and distributed environment
├── estimate_model.py: Visualized evaluation indicators ROC curve, confusion matrix, classification report, etc.
└── train_gpu.py: Training model startup file (including infer process)

Precautions

<1>Before you use the code to train your own data set, please first enter the train_gpu.py file and modify the data_root, batch_size, num_workers and nb_classes parameters. If you want to draw the confusion matrix and ROC curve, you only need to set the predict parameter to True.

<2> If you want to train hybrid_token models, named "fan*hybrid_token", then you should enter to the engine.py, set the code "output = model(samples)" to "output, aux_output = model(samples)", and you can add weights (between 0 and 1) to each output for computing the total loss. It seems like:

For "train_one_epoch" function:

with torch.cuda.amp.autocast():
    outputs, aux_outputs = model(samples)
    cls_loss = criterion(samples, outputs, targets)
    aux_loss = criterion(samples, aux_outputs, targets)
    loss = torch.tensor(0.7, device=device) * cls_loss + torch.tensor(0.3, device=device) * aux_loss
loss_value = loss.item()

For "evaluate" function:

with torch.cuda.amp.autocast():
    outputs, aux_outputs = model(samples)
    cls_loss = criterion(outputs, targets)
    aux_loss = criterion(aux_outputs, targets)
    loss = torch.tensor(0.7, device=device) * cls_loss + torch.tensor(0.3, device=device) * aux_loss

Use Sophia Optimizer (in util/optimizer.py)

You can use anther optimizer sophia, just need to change the optimizer in train_gpu.py, for this training sample, can achieve better results

# optimizer = create_optimizer(args, model_without_ddp)
optimizer = SophiaG(model.parameters(), lr=2e-4, betas=(0.965, 0.99), rho=0.01, weight_decay=args.weight_decay)

Train this model

Parameters Meaning:

1. nproc_per_node: <The number of GPUs you want to use on each node (machine/server)>
2. CUDA_VISIBLE_DEVICES: <Specify the index of the GPU corresponding to a single node (machine/server) (starting from 0)>
3. nnodes: <number of nodes (machine/server)>
4. node_rank: <node (machine/server) serial number>
5. master_addr: <master node (machine/server) IP address>
6. master_port: <master node (machine/server) port number>

Note:

If you want to use multiple GPU for training, whether it is a single machine with multiple GPUs or multiple machines with multiple GPUs, each GPU will divide the batch_size equally. For example, batch_size=4 in my train_gpu.py. If I want to use 2 GPUs for training, it means that the batch_size on each GPU is 4. Do not let batch_size=1 on each GPU, otherwise BN layer maybe report an error. If you recive an error like "error: unrecognized arguments: --local-rank=1" when you use distributed multi-GPUs training, just replace the command "torch.distributed.launch" to "torch.distributed.run".

train model with single-machine single-GPU:

python train_gpu.py

train model with single-machine multi-GPU:

python -m torch.distributed.launch --nproc_per_node=8 train_gpu.py

train model with single-machine multi-GPU:

(using a specified part of the GPUs: for example, I want to use the second and fourth GPUs)

CUDA_VISIBLE_DEVICES=1,3 python -m torch.distributed.launch --nproc_per_node=2 train_gpu.py

train model with multi-machine multi-GPU:

(For the specific number of GPUs on each machine, modify the value of --nproc_per_node. If you want to specify a certain GPU, just add CUDA_VISIBLE_DEVICES= to specify the index number of the GPU before each command. The principle is the same as single-machine multi-GPU training)

On the first machine: python -m torch.distributed.launch --nproc_per_node=1 --nnodes=2 --node_rank=0 --master_addr=<Master node IP address> --master_port=<Master node port number> train_gpu.py

On the second machine: python -m torch.distributed.launch --nproc_per_node=1 --nnodes=2 --node_rank=1 --master_addr=<Master node IP address> --master_port=<Master node port number> train_gpu.py

Citation

@inproceedings{zhao2023fully,
  title={Fully Attentional Networks with Self-emerging Token Labeling},
  author={Zhao, Bingyin and Yu, Zhiding and Lan, Shiyi and Cheng, Yutao and Anandkumar, Anima and Lao, Yingjie and Alvarez, Jose M},
  booktitle={IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2023}
}

About

This is a warehouse for STL-Pytorch-model, can be used to train your image-datasets for vision tasks.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages