Skip to content

izmailovpavel/torch_swa_examples

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Stochastic Weight Averaging (SWA)

Stochastic Weight Averaging (SWA) is now natively supported in PyTorch 1.6! This repository contains examples of using the implementation of the SWA training method for DNNs in torch.optim.swa_utils. The code in this repo is adapted from the original PyTorch implementation. Please see the new PyTorch blog post for more details about SWA and the torch.optim implementation. SWA was proposed in the paper

Averaging Weights Leads to Wider Optima and Better Generalization (UAI 2018)

by Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov and Andrew Gordon Wilson.

Introduction

SWA is a simple DNN training method that can be used as a drop-in replacement for SGD with improved generalization, faster convergence, and essentially no overhead. The key idea of SWA is to average multiple samples produced by SGD with a modified learning rate schedule. We use a constant or cyclical learning rate schedule that causes SGD to explore the set of points in the weight space corresponding to high-performing networks. We observe that SWA converges more quickly than SGD, and to wider optima that provide higher test accuracy.

In this repo we implement the constant learning rate schedule that we found to be most practical on CIFAR datasets.

Please cite our work if you find this approach useful in your research:

@article{izmailov2018averaging,
  title={Averaging Weights Leads to Wider Optima and Better Generalization},
  author={Izmailov, Pavel and Podoprikhin, Dmitrii and Garipov, Timur and Vetrov, Dmitry and Wilson, Andrew Gordon},
  journal={arXiv preprint arXiv:1803.05407},
  year={2018}
}

Dependencies

Usage

The code in this repository implements both SWA and conventional SGD training, with examples on the CIFAR-10 and CIFAR-100 datasets.

To run SWA use the following command:

python3 train.py --dir=<DIR> \
                 --dataset=<DATASET> \
                 --data_path=<PATH> \
                 --model=<MODEL> \
                 --epochs=<EPOCHS> \
                 --lr_init=<LR_INIT> \
                 --wd=<WD> \
                 --swa \
                 --swa_start=<SWA_START> \
                 --swa_lr=<SWA_LR>

Parameters:

  • DIR — path to training directory where checkpoints will be stored
  • DATASET — dataset name [CIFAR10/CIFAR100] (default: CIFAR10)
  • PATH — path to the data directory
  • MODEL — DNN model name:
    • VGG16/VGG16BN/VGG19/VGG19BN
    • PreResNet110/PreResNet164
    • WideResNet28x10
  • EPOCHS — number of training epochs (default: 200)
  • LR_INIT — initial learning rate (default: 0.1)
  • WD — weight decay (default: 1e-4)
  • SWA_START — the number of epoch after which SWA will start to average models (default: 161)
  • SWA_LR — SWA learning rate (default: 0.05)

To run conventional SGD training use the following command:

python3 train.py --dir=<DIR> \
                 --dataset=<DATASET> \
                 --data_path=<PATH> \
                 --model=<MODEL> \
                 --epochs=<EPOCHS> \
                 --lr_init=<LR_INIT> \
                 --wd=<WD> 

Examples

To reproduce the results from the paper run (we use same parameters for both CIFAR-10 and CIFAR-100 except for PreResNet):

#VGG16
python3 train.py --dir=<DIR> --dataset=CIFAR100 --data_path=<PATH> --model=VGG16 --epochs=300 --lr_init=0.05 --wd=5e-4 # SGD
python3 train.py --dir=<DIR> --dataset=CIFAR100 --data_path=<PATH> --model=VGG16 --epochs=300 --lr_init=0.05 --wd=5e-4 --swa --swa_start=161 --swa_lr=0.01 # SWA 1.5 Budgets

#PreResNet
python3 train.py --dir=<DIR> --dataset=CIFAR100 --data_path=<PATH>  --model=[PreResNet110 or PreResNet164] --epochs=300  --lr_init=0.1 --wd=3e-4 # SGD
#CIFAR100
python3 train.py --dir=<DIR> --dataset=CIFAR100 --data_path=<PATH>  --model=[PreResNet110 or PreResNet164] --epochs=300 --lr_init=0.1 --wd=3e-4 --swa --swa_start=161 --swa_lr=0.05 # SWA 1.5 Budgets
#CIFAR10
python3 train.py --dir=<DIR> --dataset=CIFAR10 --data_path=<PATH>  --model=[PreResNet110 or PreResNet164] --epochs=300 --lr_init=0.1 --wd=3e-4 --swa --swa_start=161 --swa_lr=0.01 # SWA 1.5 Budgets

#WideResNet28x10 
python3 train.py --dir=<DIR> --dataset=CIFAR100 --data_path=<PATH> --model=WideResNet28x10 --epochs=300 --lr_init=0.1 --wd=5e-4 # SGD
python3 train.py --dir=<DIR> --dataset=CIFAR100 --data_path=<PATH> --model=WideResNet28x10 --epochs=300 --lr_init=0.1 --wd=5e-4 --swa --swa_start=161 --swa_lr=0.05 # SWA 1.5 Budgets

Results

CIFAR-100

Test accuracy (%) of SGD and SWA on CIFAR-100 for different training budgets. For each model the Budget is defined as the number of epochs required to train the model with the conventional SGD procedure.

VGG-16 ResNet-164 WideResNet-28x10
Regular Training 72.8 ± 0.3 78.4 ± 0.3 81.0 ± 0.3
SWA 74.4 ± 0.3 79.8 ± 0.4 82.5 ± 0.2

Below we show the convergence plot for SWA and SGD with PreResNet164 on CIFAR-100 and the corresponding learning rates. The dashed line illustrates the accuracy of individual models averaged by SWA.

References

Provided model implementations were adapted from

Other repos and implementations:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages