Skip to content

burklight/nonlinear-IB-PyTorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Nonlinear Information Bottleneck (PyTorch)

Implementation of "Nonlinear Information Bottleneck, 2019", from Artemy Kolchinsky, Brendan D. Tracey and David H. Wolpert in PyTorch. For a tensorflow implementation, please go to "Artemy Kolchinsky's github".

This repository contains the updated implementation from 2019. To see the original implementation, please go to the master-old branch. The highlights of the new version of the Nonlinear-IB are:

  • Consideration of the empirical distribution of the training data instead of a MoG. This frees us from the optimization of the covariances of those matrices.
  • Usage of the same batch for both MI estimation and SGD training. This frees memory usage and results in a faster flow of the gradients in the network.
  • Possibility of using the Nonlinear-IB for regression. Here we assume H(Y) is the entropy of a Gaussian with variance var(Y) and H(Y|T) is the entropy of a Gaussian with variance the MSE between Y and our estimations.
  • Allow the usage of the power and exponential IB Lagrangians to explore the IB curve from "The Convex Information Bottleneck Lagrangian". We can use the the squared IB Lagrangian from "Caveats for information bottleneck in deterministic scenarios, ICLR 2019" as in the Nonlinear-IB article by using the power IB Lagrangian with parameter equal to 1.

Examples

On MNIST

Exponential IB Lagrangian with parameter = 1. Beta = 0.05

Normal IB Lagrangian. Beta = 0.15

On Fashion MNIST

Power IB Lagrangian with parameter = 1 (or squared IB Lagrangian). Beta = 0.1

Behavior of the Exponential IB Lagrangian with parameter = 1.

On California Housing

Exponential IB Lagrangian with parameter 3. Beta = 0.005

Behavior of the Exponential IB Lagrangian with parameter 1.

Requirements

The code has been tested on Python 3.6.8 and the following packages. It will probably work with older packages, though.

  • torch 1.2.0+cpu
  • torchvision 0.4.0+cpu
  • matplotlib 3.1.1
  • progressbar2 3.43.1
  • scikit-learn 0.21.3
  • numpy 1.17.2

In order to install the requirements you can just write pip3 install -r requirements.txt.

Usage

Run either python3 train_model.pyor python3 study_behavior.py in the src directory. The arguments are the following:

[-h] [--logs_dir LOGS_DIR] [--figs_dir FIGS_DIR]
    [--models_dir MODELS_DIR] [--n_epochs N_EPOCHS]
    [--beta BETA] [--beta_lim_min BETA_LIM_MIN]
    [--beta_lim_max BETA_LIM_MAX] [--hfunc {exp,pow,none}]
    [--hfunc_param HFUNC_PARAM] [--n_betas N_BETAS] [--K K]
    [--logvar_t LOGVAR_T] [--sgd_batch_size SGD_BATCH_SIZE]
    [--early_stopping_lim EARLY_STOPPING_LIM]
    [--dataset {mnist,fashion_mnist,california_housing}]
    [--optimizer_name {sgd,rmsprop,adadelta,adagrad,adam,asgd}]
    [--learning_rate LEARNING_RATE]
    [--learning_rate_drop LEARNING_RATE_DROP]
    [--learning_rate_steps LEARNING_RATE_STEPS]
    [--train_logvar_t] [--eval_rate EVAL_RATE] [--visualize]
    [--verbose]

Run nonlinear IB (with Pytorch)

optional arguments:
  -h, --help            show this help message and exit
  --logs_dir LOGS_DIR   folder to output the logs (default: ../results/logs/)
  --figs_dir FIGS_DIR   folder to output the images (default:
                        ../results/figures/)
  --models_dir MODELS_DIR
                        folder to save the models (default:
                        ../results/models/)
  --n_epochs N_EPOCHS   number of training epochs (default: 100)
  --beta BETA           Lagrange multiplier (only for train_model) (default:
                        0.0)
  --beta_lim_min BETA_LIM_MIN
                        minimum value of beta for the study of the behavior
                        (default: 0.0)
  --beta_lim_max BETA_LIM_MAX
                        maximum value of beta for the study of the behavior
                        (default: 1.0)
  --hfunc {exp,pow,none}
                        Monotonically increasing, strictly convex function for
                        the Lagrangian (default: exp)
  --hfunc_param HFUNC_PARAM
                        Parameter of the h function (default: 1.0)
  --n_betas N_BETAS     Number of Lagrange multipliers (only for study
                        behavior) (default: 21)
  --K K                 Dimensionality of the bottleneck varaible (default: 2)
  --logvar_t LOGVAR_T   initial log varaince of the bottleneck variable
                        (default: 0.0)
  --sgd_batch_size SGD_BATCH_SIZE
                        mini-batch size for the SGD on the error (default:
                        256)
  --early_stopping_lim EARLY_STOPPING_LIM
                        early stopping limit for non improvement (default: 20)
  --dataset {mnist,fashion_mnist,california_housing}
                        dataset where to run the experiments. Classification:
                        MNIST or Fashion MNIST. Regression: California
                        housing. (default: mnist)
  --optimizer_name {sgd,rmsprop,adadelta,adagrad,adam,asgd}
                        optimizer (default: adam)
  --learning_rate LEARNING_RATE
                        initial learning rate (default: 0.001)
  --learning_rate_drop LEARNING_RATE_DROP
                        learning rate decay rate (step LR every
                        learning_rate_steps) (default: 0.6)
  --learning_rate_steps LEARNING_RATE_STEPS
                        number of steps (epochs) before decaying the learning
                        rate (default: 10)
  --train_logvar_t      train the log(variance) of the bottleneck variable
                        (default: False)
  --eval_rate EVAL_RATE
                        evaluate I(X;T), I(T;Y) and accuracies every eval_rate
                        epochs (default: 20)
  --visualize           visualize the results every eval_rate epochs (default:
                        False)
  --verbose             report the results every eval_rate epochs (default:
                        False)