Skip to content

Commit 90d1a6f

Browse files
authored
Add files via upload
0 parents  commit 90d1a6f

21 files changed

+2342
-0
lines changed

1preprocess.py

Lines changed: 52 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,52 @@
1+
from util.data_loader import *
2+
from util.evaluate import *
3+
from util.hyperpara import *
4+
from util.models import *
5+
from util.module import *
6+
from util.training import *
7+
from util.utils import *
8+
9+
parser = argparse.ArgumentParser()
10+
parser.add_argument('--dataset_name', type=str, default="cora", help= 'cora, citeseer, ogbn-arxiv, reddit')
11+
parser.add_argument('--result_path', type=str, default="./results/")
12+
parser.add_argument('--eigen_path', type=str, default="./save_eigen/")
13+
parser.add_argument('--seed', type=int, default=1)
14+
parser.add_argument('--gpu', type=int, default=-1)
15+
parser.add_argument('--shot', type=int, default=3)
16+
parser.add_argument('--data_dir', type=str, default="./data/")
17+
parser.add_argument('--split_data_dir', type=str, default="./dataset_split/")
18+
args = parser.parse_args()
19+
20+
print(f"dataset:{args.dataset_name}")
21+
args = device_setting(args)
22+
seed_everything(args.seed)
23+
24+
args.eigen_path += f'{args.dataset_name}/'
25+
if not os.path.exists(args.eigen_path):
26+
os.makedirs(args.eigen_path)
27+
args.eigvals_path = args.eigen_path+ "eigenvalues.npy"
28+
args.eigvecs_path = args.eigen_path+ "eigenvectors.npy"
29+
args.lccmask_path = args.eigen_path+ "mask_lcc.npy"
30+
31+
## data
32+
datasets = get_dataset(args)
33+
args, data, data_val, data_test = set_dataset(args, datasets)
34+
35+
## get eigens
36+
L_lcc = aug_full_connected(data.x, data.edge_index, data.num_nodes)
37+
eigenvals_lcc, eigenvecs_lcc = get_eigens(args, L_lcc)
38+
39+
np.save(args.eigvals_path, eigenvals_lcc)
40+
np.save(args.eigvecs_path, eigenvecs_lcc)
41+
42+
43+
44+
45+
46+
47+
48+
49+
50+
51+
52+

2pretrain.py

Lines changed: 102 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,102 @@
1+
from util.data_loader import *
2+
from util.evaluate import *
3+
from util.hyperpara import *
4+
from util.models import *
5+
from util.module import *
6+
from util.training import *
7+
from util.utils import *
8+
warnings.filterwarnings("ignore")
9+
10+
parser = argparse.ArgumentParser()
11+
parser.add_argument('--dataset_name', type=str, default="cora", help= 'cora, citeseer, ogbn-arxiv, reddit')
12+
parser.add_argument('--gpu', type=int, default=2)
13+
parser.add_argument('--result_path', type=str, default="./results/")
14+
parser.add_argument('--model_path', type=str, default="./save_pretrain_model/")
15+
parser.add_argument('--eigen_path', type=str, default="./save_eigen/")
16+
parser.add_argument('--data_dir', type=str, default="./data/")
17+
parser.add_argument('--split_data_dir', type=str, default="./dataset_split/")
18+
19+
# pretrain
20+
parser.add_argument('--epoch_pretrain', type=int, default=200)
21+
parser.add_argument('--epoch_ssl', type=int, default=20)
22+
parser.add_argument('--iter_num', type=int, default=5)
23+
parser.add_argument('--lr_pretrain', type=float, default=0.001)
24+
parser.add_argument('--lr_ssl_spa', type=float, default=0.0001)
25+
parser.add_argument('--lr_ssl_spe', type=float, default=0.001)
26+
parser.add_argument('--alpha', type=float, default=1)
27+
28+
# downstream task
29+
parser.add_argument('--reduction_rate', type=float, default=0.005)
30+
parser.add_argument('--epoch_cls', type=int, default=200)
31+
parser.add_argument('--epoch_lp', type=int, default=200)
32+
parser.add_argument('--lr_cls', type=float, default=0.01)
33+
parser.add_argument('--lr_lp', type=float, default=0.01)
34+
parser.add_argument('--weight_decay', type=float, default=5e-4)
35+
parser.add_argument('--dropout', type=float, default=0.5)
36+
parser.add_argument('--nrepeat', type=int, default=5)
37+
parser.add_argument('--seed', type=int, default=0)
38+
parser.add_argument('--n_dim', type=int, default=256)
39+
parser.add_argument('--eva_iter', type=int, default=1)
40+
parser.add_argument('--test_gnn', type=str, default='GCN')
41+
parser.add_argument('--shot', type=int, default=3)
42+
args = parser.parse_args()
43+
args = device_setting(args)
44+
seed_everything(args.seed)
45+
46+
47+
args.result_path = f'./results_proposed/'
48+
args.eigen_path += f'{args.dataset_name}/'
49+
if not os.path.exists(args.result_path):
50+
os.makedirs(args.result_path)
51+
if not os.path.exists(args.model_path):
52+
os.makedirs(args.model_path)
53+
54+
args = SSL_hyperpara(args)
55+
args = SSL_reduction(args)
56+
57+
acc_shot3_NC= []
58+
acc_shot5_NC= []
59+
auc_LP= []
60+
acc_LP= []
61+
nmi_CL = []
62+
ari_CL = []
63+
64+
65+
for i in range(args.nrepeat):
66+
args.seed += 1
67+
68+
## data
69+
datasets = get_dataset(args)
70+
args, data, data_val, data_test = set_dataset(args, datasets)
71+
print("train num:", int(data.train_mask.sum()))
72+
args.syn_num = int(data.train_num_original * args.reduction_rate)
73+
74+
## model
75+
model_spa = GCN(data.num_features, args.n_dim, args.num_class, 2, args.dropout).to(args.device)
76+
77+
## initialization
78+
model_spa, cluster_idx = pre_train(args, data, data_test, model_spa)
79+
80+
## evaluate
81+
H, H_val, H_test, H_test_masked, labels_test, \
82+
H_train_shot_3, label_train_shot_3, \
83+
H_train_shot_5, label_train_shot_5 = eva_data(args, data, data_val, data_test, model_spa)
84+
85+
nmi, ari = evaluate_CL(H_test_masked, labels_test)
86+
acc_shot3, acc_shot5 = evaluate_NC(args, H_train_shot_3, label_train_shot_3, H_train_shot_5, label_train_shot_5, H_test_masked, labels_test)
87+
auc_lp, acc_lp = evaluate_LP(args, data, H, H_val, H_test, data_val, data_test)
88+
89+
acc_shot3_NC.append(acc_shot3)
90+
acc_shot5_NC.append(acc_shot5)
91+
auc_LP.append(auc_lp)
92+
acc_LP.append(acc_lp)
93+
nmi_CL.append(nmi)
94+
ari_CL.append(ari)
95+
print()
96+
97+
pretrain_record_caption(args)
98+
result_record_whole_NC(args, acc_shot3_NC, shot=3)
99+
result_record_whole_NC(args, acc_shot5_NC, shot=5)
100+
result_record_whole_LP(args, auc_LP, acc_LP)
101+
result_record_whole_CL(args, nmi_CL, ari_CL)
102+
print()

3relaymodel.py

Lines changed: 112 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,112 @@
1+
from util.data_loader import *
2+
from util.evaluate import *
3+
from util.hyperpara import *
4+
from util.models import *
5+
from util.module import *
6+
from util.training import *
7+
from util.utils import *
8+
warnings.filterwarnings("ignore")
9+
10+
parser = argparse.ArgumentParser()
11+
parser.add_argument('--dataset_name', type=str, default="cora", help= 'cora, citeseer, ogbn-arxiv, reddit')
12+
parser.add_argument('--gpu', type=int, default=4)
13+
parser.add_argument('--result_path', type=str, default="./results/")
14+
parser.add_argument('--model_path', type=str, default="./save_pretrain_model/")
15+
parser.add_argument('--eigen_path', type=str, default="./save_eigen/")
16+
parser.add_argument('--data_dir', type=str, default="./data/")
17+
parser.add_argument('--split_data_dir', type=str, default="./dataset_split/")
18+
19+
# pretrain
20+
parser.add_argument('--epoch_pretrain', type=int, default=200)
21+
parser.add_argument('--epoch_ssl', type=int, default=20)
22+
parser.add_argument('--iter_num', type=int, default=5)
23+
parser.add_argument('--lr_pretrain', type=float, default=0.001)
24+
parser.add_argument('--lr_ssl_spa', type=float, default=0.0001)
25+
parser.add_argument('--lr_ssl_spe', type=float, default=0.001)
26+
parser.add_argument('--alpha', type=float, default=1000)
27+
28+
# downstream task
29+
parser.add_argument('--reduction_rate', type=float, default= 0.005)
30+
parser.add_argument('--epoch_cls', type=int, default=200)
31+
parser.add_argument('--epoch_lp', type=int, default=200)
32+
parser.add_argument('--lr_cls', type=float, default=0.01)
33+
parser.add_argument('--lr_lp', type=float, default=0.01)
34+
parser.add_argument('--weight_decay', type=float, default=5e-4)
35+
parser.add_argument('--dropout', type=float, default=0.5)
36+
parser.add_argument('--nrepeat', type=int, default=5)
37+
parser.add_argument('--seed', type=int, default=0)
38+
parser.add_argument('--n_dim', type=int, default=256)
39+
parser.add_argument('--eva_iter', type=int, default=1)
40+
parser.add_argument('--test_gnn', type=str, default='GCN')
41+
parser.add_argument('--shot', type=int, default=3)
42+
args = parser.parse_args()
43+
args = device_setting(args)
44+
seed_everything(args.seed)
45+
46+
47+
args.result_path = f'./results_proposed/'
48+
args.eigen_path += f'{args.dataset_name}/'
49+
if not os.path.exists(args.result_path):
50+
os.makedirs(args.result_path)
51+
if not os.path.exists(args.model_path):
52+
os.makedirs(args.model_path)
53+
54+
args = SSL_hyperpara(args)
55+
56+
acc_shot3_NC= []
57+
acc_shot5_NC= []
58+
auc_LP= []
59+
acc_LP= []
60+
nmi_CL = []
61+
ari_CL = []
62+
63+
64+
for i in range(args.nrepeat):
65+
args.seed += 1
66+
67+
## data
68+
datasets = get_dataset(args)
69+
args, data, data_val, data_test = set_dataset(args, datasets)
70+
print("train num:", int(data.train_mask.sum()))
71+
args.syn_num = int(data.train_num_original * args.reduction_rate)
72+
data = load_eigens(args, data)
73+
74+
## model
75+
model_spa = GCN(data.num_features, args.n_dim, args.syn_num, 2, args.dropout).to(args.device)
76+
model_spe = EigenMLP(args.n_dim, args.syn_num, args.syn_num).to(args.device)
77+
78+
## initialization
79+
model_spa, cluster_idx = pre_train(args, data, data_test, model_spa)
80+
ccenter_spa, ccenter_spe = init_cc(data, model_spa, model_spe,cluster_idx)
81+
82+
## pre-train
83+
for iter in range(args.iter_num):
84+
model_spa, cluster_idx, ccenter_spa = model_training_SSL(args, data, data_test, model_spa, ccenter_spa, cluster_idx, args.lr_ssl_spa, args.epoch_ssl)
85+
model_spe, cluster_idx, ccenter_spe = model_training_SSL(args, data, data_test, model_spe, ccenter_spe, cluster_idx, args.lr_ssl_spe, args.epoch_ssl)
86+
87+
## save models
88+
save_pre_train(args, model_spa, ccenter_spa, model_spe, ccenter_spe)
89+
90+
## evaluate
91+
H, H_val, H_test, H_test_masked, labels_test, \
92+
H_train_shot_3, label_train_shot_3, \
93+
H_train_shot_5, label_train_shot_5 = eva_data(args, data, data_val, data_test, model_spa)
94+
95+
nmi, ari = evaluate_CL(H_test_masked, labels_test)
96+
acc_shot3, acc_shot5 = evaluate_NC(args, H_train_shot_3, label_train_shot_3, H_train_shot_5, label_train_shot_5, H_test_masked, labels_test)
97+
auc_lp, acc_lp = evaluate_LP(args, data, H, H_val, H_test, data_val, data_test)
98+
99+
acc_shot3_NC.append(acc_shot3)
100+
acc_shot5_NC.append(acc_shot5)
101+
auc_LP.append(auc_lp)
102+
acc_LP.append(acc_lp)
103+
nmi_CL.append(nmi)
104+
ari_CL.append(ari)
105+
print()
106+
107+
teacher_record_caption(args)
108+
result_record_whole_NC(args, acc_shot3_NC, shot=3)
109+
result_record_whole_NC(args, acc_shot5_NC, shot=5)
110+
result_record_whole_LP(args, auc_LP, acc_LP)
111+
result_record_whole_CL(args, nmi_CL, ari_CL)
112+
print()

4condense.py

Lines changed: 111 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,111 @@
1+
from util.data_loader import *
2+
from util.evaluate import *
3+
from util.hyperpara import *
4+
from util.models import *
5+
from util.module import *
6+
from util.training import *
7+
from util.utils import *
8+
warnings.filterwarnings("ignore")
9+
10+
parser = argparse.ArgumentParser()
11+
parser.add_argument('--dataset_name', type=str, default="cora", help= 'cora, citeseer, ogbn-arxiv, reddit')
12+
parser.add_argument('--gpu', type=int, default=1)
13+
parser.add_argument('--result_path', type=str, default="./results/")
14+
parser.add_argument('--model_path', type=str, default="./save_pretrain_model/")
15+
parser.add_argument('--eigen_path', type=str, default="./save_eigen/")
16+
parser.add_argument('--condensed_path', type=str, default="./save_condensed_data/")
17+
parser.add_argument('--data_dir', type=str, default="./data/")
18+
parser.add_argument('--split_data_dir', type=str, default="./dataset_split/")
19+
20+
# generation
21+
parser.add_argument('--epoch_u', type=int, default=600)
22+
parser.add_argument('--lr_u', type=float, default=0.001)
23+
parser.add_argument('--epoch_x', type=int, default=600)
24+
parser.add_argument('--lr_x', type=float, default=0.001)
25+
parser.add_argument('--epoch_downstream', type=int, default=600)
26+
parser.add_argument('--lr_downstream', type=float, default=0.01)
27+
parser.add_argument('--loss_generation', type=str, default='mse')
28+
29+
# downstream task
30+
parser.add_argument('--reduction_rate', type=float, default=0.5)
31+
parser.add_argument('--epoch_cls', type=int, default=200)
32+
parser.add_argument('--epoch_lp', type=int, default=200)
33+
parser.add_argument('--lr_cls', type=float, default=0.01)
34+
parser.add_argument('--lr_lp', type=float, default=0.01)
35+
parser.add_argument('--weight_decay', type=float, default=5e-4)
36+
parser.add_argument('--dropout', type=float, default=0.5)
37+
parser.add_argument('--nrepeat', type=int, default=5)
38+
parser.add_argument('--seed', type=int, default=0)
39+
parser.add_argument('--n_dim', type=int, default=256)
40+
parser.add_argument('--eva_iter', type=int, default=1)
41+
parser.add_argument('--test_gnn', type=str, default='GCN')
42+
parser.add_argument('--shot', type=int, default=3)
43+
args = parser.parse_args()
44+
args = device_setting(args)
45+
seed_everything(args.seed)
46+
47+
48+
args.result_path = f'./results_proposed/'
49+
args.condensed_path += f'{args.dataset_name}/'
50+
args.eigen_path += f'{args.dataset_name}/'
51+
if not os.path.exists(args.result_path):
52+
os.makedirs(args.result_path)
53+
if not os.path.exists(args.condensed_path):
54+
os.makedirs(args.condensed_path)
55+
56+
args = generation_hyperpara(args)
57+
58+
acc_shot3_NC= []
59+
acc_shot5_NC= []
60+
auc_LP = []
61+
acc_LP = []
62+
nmi_CL = []
63+
ari_CL = []
64+
65+
for i in range(args.nrepeat):
66+
args.seed += 1
67+
68+
## original data
69+
datasets = get_dataset(args)
70+
args, data, data_val, data_test = set_dataset(args, datasets)
71+
args.syn_num = int(data.train_num_original * args.reduction_rate)
72+
data = load_eigens(args, data)
73+
74+
## model
75+
model_spa = GCN(data.num_features, args.n_dim, args.syn_num, 2, args.dropout).to(args.device)
76+
model_spe = EigenMLP(args.n_dim, args.syn_num, args.syn_num).to(args.device)
77+
model_spa, ccenter_spa, model_spe, ccenter_spe = load_pre_train(args, model_spa, model_spe)
78+
79+
## condensed data generation
80+
adj_syn = adj_generation(args, data, model_spe, ccenter_spe)
81+
data_syn = feat_generation(args, data, model_spa, ccenter_spa, adj_syn)
82+
83+
save_condensed_data(args, data_syn)
84+
85+
## downstream model training
86+
model = train_model_syn(args, data_syn)
87+
88+
## evaluation
89+
H, H_val, H_test, H_test_masked, labels_test, \
90+
H_train_shot_3, label_train_shot_3, \
91+
H_train_shot_5, label_train_shot_5 = eva_data(args, data, data_val, data_test, model)
92+
93+
nmi, ari = evaluate_CL(H_test_masked, labels_test)
94+
acc_shot3, acc_shot5 = evaluate_NC(args, H_train_shot_3, label_train_shot_3, H_train_shot_5, label_train_shot_5, H_test_masked, labels_test)
95+
auc_lp, acc_lp = evaluate_LP(args, data, H, H_val, H_test, data_val, data_test)
96+
97+
acc_shot3_NC.append(acc_shot3)
98+
acc_shot5_NC.append(acc_shot5)
99+
auc_LP.append(auc_lp)
100+
acc_LP.append(acc_lp)
101+
nmi_CL.append(nmi)
102+
ari_CL.append(ari)
103+
print(f"Performance: acc_shot3: {acc_shot3*100:.2f}", f"auc_lp: {auc_lp*100:.2f}", f"nmi: {nmi*100:.2f}")
104+
print()
105+
106+
downstream_record_caption(args, data_syn)
107+
result_record_whole_NC(args, acc_shot3_NC, shot=3)
108+
result_record_whole_NC(args, acc_shot5_NC, shot=5)
109+
result_record_whole_LP(args, auc_LP, acc_LP)
110+
result_record_whole_CL(args, nmi_CL, ari_CL)
111+
print()

0 commit comments

Comments
 (0)