Skip to content

Commit fa16558

Browse files
committed
ReadMe
1 parent 0b46bbf commit fa16558

File tree

4 files changed

+112
-0
lines changed

4 files changed

+112
-0
lines changed

Imgs/Circuit.png

245 KB
Loading

Imgs/Flow.png

1.34 MB
Loading

Imgs/Pins.png

45.6 KB
Loading

README.md

Lines changed: 112 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,112 @@
1+
# Aido Robot: Sensor Hub and Data Fusion (Simulated)
2+
3+
> ⚠️ **Disclaimer:** This is a simulated project developed for educational and demonstration purposes. It is **not** an actual implementation of the Aido Robot hardware but is intended to showcase the core logic, design architecture, and data fusion principles used in a sensor hub system.
4+
5+
## 📌 Project Overview
6+
7+
This project simulates the working of a **Sensor Hub and Data Fusion System** for the Aido Robot — a multi-sensor, intelligent companion robot. It models how various environmental and proximity sensors can be integrated with intelligent data polling, logging, and air quality assessment.
8+
9+
## 🔧 Technologies Used
10+
11+
- **STM32 Blue Pill (STM32F103C6)** microcontroller
12+
- **Proteus** for simulation
13+
- **STM32CubeIDE** for embedded development
14+
- **C (Bare-metal)** programming
15+
- External `.c/.h` module structure
16+
17+
## 🧠 Key Features
18+
19+
-**Adaptive Sensor Polling** based on environmental triggers and thresholds
20+
-**Sensor Power Management** using GPIO control to reduce energy consumption
21+
-**Structured Sensor Representation** via `sensor_t` struct for modular design
22+
-**Data Logging** with FIFO buffer mechanism for temporary storage
23+
-**Advanced AQI Calculation** using pollutant concentration data
24+
-**Sleep/Stand-by Modes** to improve overall system efficiency
25+
-**Integration with IR and Ultrasonic Sensors** for obstacle detection
26+
-**Modular Codebase** structured for scalability and hardware independence
27+
28+
## 📈 Sensors Simulated
29+
30+
| Sensor | Type | Functionality | Polling | Logging |
31+
|-------------|---------------------------------------------|--------------------------------------|----------|----------|
32+
| DHT22 | Temp & Humidity | Adaptive polling, comfort zone logic |||
33+
| MQ135 | Gas Sensor (CO, etc) | Adaptive on fluctuations |||
34+
| BME688 | Env. Sensor (Gas, Pressure, Temp, Humidity) | Adaptive |||
35+
| Ultrasonic | Distance | Continuous object detection |||
36+
| IR Sensor | Obstacle detection | Continuous sensing |||
37+
38+
## 📊 Air Quality Index (AQI)
39+
40+
AQI is calculated using individual pollutant indexes based on the following formula:
41+
$$ I=\frac{(Ihigh​−Ilow​)}{(Chigh​−Clow​)}​×(C−Clow​)+Ilow​ $$
42+
𝐼 : AQI value \
43+
𝐶 : Pollutant concentration \
44+
𝐶𝑙𝑜𝑤 , 𝐶ℎ𝑖𝑔ℎ ​ : Concentration range \
45+
𝐼𝑙𝑜𝑤 , 𝐼ℎ𝑖𝑔ℎ ​ : AQI range for that concentration
46+
47+
- Based on 24-hour averages for PM2.5
48+
- Based on 8-hour averages for CO, NO2, etc.
49+
- Overall AQI determined by the highest individual AQI
50+
51+
## 📚 Project Structure
52+
53+
|-- Core/
54+
|
55+
├── src/
56+
│ ├── main.c
57+
│ ├── sensor_logger.c
58+
│ ├── aqi.c
59+
| |-- DHT22.c
60+
|
61+
├── inc/
62+
│ ├── main.h
63+
│ ├── sensor_logger.h
64+
│ ├── aqi.h
65+
| |-- DHT22.h
66+
├── README.md
67+
68+
|--- Debug/
69+
|
70+
|-- Aido SensorHub.hex
71+
72+
---
73+
74+
## 📷 Circuit Diagram
75+
76+
> Proteus-based schematic showing STM32 Blue Pill and connected sensors.
77+
78+
![Circuit Diagram](/Imgs/Circuit.png)
79+
80+
---
81+
82+
## 🔁 System Flow Chart
83+
84+
> A high-level flow diagram of sensor polling, data logging, and AQI processing.
85+
86+
![System Flowchart](/Imgs/Flow.png)
87+
88+
---
89+
90+
## ⚙️ Pin Configuration
91+
92+
> GPIO pin mapping of each sensor and peripherals to the STM32 controller.
93+
94+
![Pin Configuration](/Imgs/Pins.png)
95+
96+
## 📂 DHT22 GitHub Repository
97+
98+
Used the external Library for Dht22 from "MrHause":
99+
👉 **[GitHub Link](https://github.com/MrHause/DHT22_STM32_HAL_LIBRARY)**
100+
101+
---
102+
103+
## 📌 Future Scope
104+
105+
- Real hardware deployment and calibration
106+
- Integration with machine learning models for predictive analytics
107+
- Live AQI display and data cloud sync
108+
109+
---
110+
111+
🛠️ Feel free to fork, study, and build upon this simulation.
112+
📩 Contributions and suggestions are always welcome!

0 commit comments

Comments
 (0)