|
| 1 | +import numpy as np |
| 2 | +import torch |
| 3 | +from torch.utils.data import Dataset, DataLoader |
| 4 | + |
| 5 | + |
| 6 | +class create_Dataset(): |
| 7 | + def __init__(self, datasetNmae, labelType): |
| 8 | + DATA_MAP = { |
| 9 | + 'emotake': self.__init_emotake, |
| 10 | + 'other': None |
| 11 | + } |
| 12 | + data, multi_task, label = DATA_MAP[datasetNmae](labelType) |
| 13 | + self.d_l = {'data': data, 'multi_task': multi_task, 'label': label} |
| 14 | + |
| 15 | + def __init_emotake(self, labelType): |
| 16 | + # au_data = np.load('data/aus.npy').transpose(0, 2, 1) |
| 17 | + # em_data = np.load('data/ems.npy').transpose(0, 2, 1) |
| 18 | + # hp_data = np.load('data/hps.npy').transpose(0, 2, 1) |
| 19 | + au_data = np.load('data/aus.npy') |
| 20 | + em_data = np.load('data/ems.npy') |
| 21 | + hp_data = np.load('data/hps.npy') |
| 22 | + |
| 23 | + # Body Poster 的维度是 batch,lenght,point1,point2 |
| 24 | + # 300 12 2 中的 12 2 代表的是每个图片提取出了12个点,2是每个点的横纵坐标 |
| 25 | + bp_data = np.load('data/bps.npy') |
| 26 | + # bp_data = bp_data.reshape(bp_data.shape[0], bp_data.shape[1], -1).transpose(0, 2, 1) |
| 27 | + bp_data = bp_data.reshape(bp_data.shape[0], bp_data.shape[1], -1) |
| 28 | + |
| 29 | + combine_data = [{'au': au_data[i], 'em': em_data[i], 'hp': hp_data[i], 'bp': bp_data[i]} for i in range(len(au_data))] |
| 30 | + |
| 31 | + quality_label = np.load('data/quality.npy', allow_pickle=True) |
| 32 | + quality_label = np.array(quality_label, dtype=int) |
| 33 | + ra_label = np.load('data/ra.npy', allow_pickle=True) |
| 34 | + ra_label = np.array(ra_label, dtype=int) |
| 35 | + readiness_label = np.load('data/readiness.npy', allow_pickle=True) |
| 36 | + readiness_label = np.array(readiness_label, dtype=int) |
| 37 | + |
| 38 | + multi_task = [] |
| 39 | + for i in range(len(quality_label)): |
| 40 | + multi_task.append([quality_label[i], ra_label[i], readiness_label[i]]) |
| 41 | + |
| 42 | + if labelType == 'quality': |
| 43 | + combine_label = quality_label |
| 44 | + elif labelType == 'ra': |
| 45 | + combine_label = ra_label |
| 46 | + else: |
| 47 | + combine_label = readiness_label |
| 48 | + |
| 49 | + return combine_data, multi_task, combine_label |
| 50 | + |
| 51 | + def __len__(self): |
| 52 | + return len(self.dataset['label']) |
| 53 | + |
| 54 | + |
| 55 | +def create_DataLoader(opt, dataset): |
| 56 | + dataset = MDDataset(dataset) |
| 57 | + dataLoader = DataLoader( |
| 58 | + dataset, |
| 59 | + batch_size=opt.batch_size, |
| 60 | + num_workers=opt.num_workers, |
| 61 | + shuffle=True |
| 62 | + ) |
| 63 | + return dataLoader |
| 64 | + |
| 65 | + |
| 66 | +class MDDataset(Dataset): |
| 67 | + def __init__(self, dataset): |
| 68 | + self.reconstruct_dataset(dataset) |
| 69 | + |
| 70 | + def reconstruct_dataset(self, dataset): |
| 71 | + data, label = dataset[0], dataset[1] |
| 72 | + au, em, hp, bp = [], [], [], [] |
| 73 | + for i in range(len(data)): |
| 74 | + au.append(data[i]['au']) |
| 75 | + em.append(data[i]['em']) |
| 76 | + hp.append(data[i]['hp']) |
| 77 | + bp.append(data[i]['bp']) |
| 78 | + |
| 79 | + self.au = torch.tensor(np.array(au), dtype=torch.float32) |
| 80 | + self.em = torch.tensor(np.array(em), dtype=torch.float32) |
| 81 | + self.hp = torch.tensor(np.array(hp), dtype=torch.float32) |
| 82 | + self.bp = torch.tensor(np.array(bp), dtype=torch.float32) |
| 83 | + |
| 84 | + self.au_lengths = len(self.au[0]) |
| 85 | + self.em_lengths = len(self.em[0]) |
| 86 | + self.hp_lengths = len(self.hp[0]) |
| 87 | + self.bp_lengths = len(self.bp[0]) |
| 88 | + |
| 89 | + # # Clear dirty data |
| 90 | + # self.audio[self.audio == -np.inf] = 0 |
| 91 | + # self.vision[self.vision == -np.inf] = 0 |
| 92 | + self.__gen_mask() |
| 93 | + self.label = torch.tensor(label) |
| 94 | + |
| 95 | + def __gen_mask(self): |
| 96 | + mask_list = [] |
| 97 | + for data in [self.au, self.em, self.hp, self.bp]: |
| 98 | + mask = torch.tensor([[False for i in range(data.shape[1])] for j in range(data.shape[0])]) |
| 99 | + mask_list.append(mask) |
| 100 | + self.padding_mask_au = mask_list[0] |
| 101 | + self.padding_mask_em = mask_list[1] |
| 102 | + self.padding_mask_hp = mask_list[2] |
| 103 | + self.padding_mask_bp = mask_list[3] |
| 104 | + |
| 105 | + def __len__(self): |
| 106 | + return len(self.label) |
| 107 | + |
| 108 | + def __getitem__(self, index): |
| 109 | + sample = { |
| 110 | + 'au': self.au[index], |
| 111 | + 'em': self.em[index], |
| 112 | + 'hp': self.hp[index], |
| 113 | + 'bp': self.bp[index], |
| 114 | + 'au_lengths': self.au_lengths, |
| 115 | + 'em_lengths': self.em_lengths, |
| 116 | + 'hp_lengths': self.hp_lengths, |
| 117 | + 'bp_lengths': self.bp_lengths, |
| 118 | + 'padding_mask_au': self.padding_mask_au[index], |
| 119 | + 'padding_mask_em': self.padding_mask_em[index], |
| 120 | + 'padding_mask_hp': self.padding_mask_hp[index], |
| 121 | + 'padding_mask_bp': self.padding_mask_bp[index], |
| 122 | + 'label': self.label[index], |
| 123 | + 'index': index |
| 124 | + } |
| 125 | + return sample |
0 commit comments