Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use helper functions thoroughly #148

Merged
merged 4 commits into from Apr 13, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
6 changes: 3 additions & 3 deletions Project.toml
Expand Up @@ -19,9 +19,9 @@ IntervalArithmetic = "^0.20"
IntervalRootFinding = "0.5"
RecipesBase = "1"
Reexport = "1"
TaylorIntegration = "0.9, 0.10"
TaylorSeries = "0.12"
julia = "1.6, 1.7"
TaylorIntegration = "0.11"
TaylorSeries = "0.13"
julia = "1.6, 1"

[extras]
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Expand Down
128 changes: 78 additions & 50 deletions src/arithmetic.jl
Expand Up @@ -3,43 +3,48 @@
# Addition, substraction and other functions
for TM in tupleTMs
@eval begin
tmdata(f::$TM) = (f.x0, f.dom)
tmdata(f::$TM) = (expansion_point(f), domain(f))

zero(a::$TM) = $TM(zero(a.pol), zero(a.rem), a.x0, a.dom)
one(a::$TM) = $TM(one(a.pol), zero(a.rem), a.x0, a.dom)
zero(a::$TM) = $TM(zero(a.pol), zero(remainder(a)), expansion_point(a), domain(a))
one(a::$TM) = $TM(one(a.pol), zero(remainder(a)), expansion_point(a), domain(a))

# iszero(a::$TM) = iszero(a.pol) && iszero(zero(a.rem))
# iszero(a::$TM) = iszero(a.pol) && iszero(zero(remainder(a)))

findfirst(a::$TM) = findfirst(a.pol)

==(a::$TM, b::$TM) =
a.pol == b.pol && a.rem == b.rem && a.x0 == b.x0 && a.dom == b.dom
a.pol == b.pol && remainder(a) == remainder(b) && tmdata(a) == tmdata(b)
# expansion_point(a) == expansion_point(b) && domain(a) == domain(b)


# Addition
+(a::$TM) = $TM(a.pol, a.rem, a.x0, a.dom)
+(a::$TM) = $TM(a.pol, remainder(a), expansion_point(a), domain(a))

function +(a::$TM, b::$TM)
a, b = fixorder(a, b)
return $TM(a.pol+b.pol, a.rem+b.rem, a.x0, a.dom)
return $TM(a.pol+b.pol, remainder(a)+remainder(b), expansion_point(a), domain(a))
end

+(a::$TM, b::T) where {T<:NumberNotSeries} = $TM(a.pol+b, a.rem, a.x0, a.dom)
+(a::$TM, b::T) where {T<:NumberNotSeries} = $TM(a.pol+b, remainder(a),
expansion_point(a), domain(a))

+(b::T, a::$TM) where {T<:NumberNotSeries} = $TM(b+a.pol, a.rem, a.x0, a.dom)
+(b::T, a::$TM) where {T<:NumberNotSeries} = $TM(b+a.pol, remainder(a),
expansion_point(a), domain(a))


# Substraction
-(a::$TM) = $TM(-a.pol, -a.rem, a.x0, a.dom)
-(a::$TM) = $TM(-a.pol, -remainder(a), expansion_point(a), domain(a))

function -(a::$TM, b::$TM)
a, b = fixorder(a, b)
return $TM(a.pol-b.pol, a.rem-b.rem, a.x0, a.dom)
return $TM(a.pol-b.pol, remainder(a)-remainder(b), expansion_point(a), domain(a))
end

-(a::$TM, b::T) where {T<:NumberNotSeries} = $TM(a.pol-b, a.rem, a.x0, a.dom)
-(a::$TM, b::T) where {T<:NumberNotSeries} = $TM(a.pol-b, remainder(a),
expansion_point(a), domain(a))

-(b::T, a::$TM) where {T<:NumberNotSeries} = $TM(b-a.pol, -a.rem, a.x0, a.dom)
-(b::T, a::$TM) where {T<:NumberNotSeries} = $TM(b-a.pol, -remainder(a),
expansion_point(a), domain(a))


# Basic division
Expand All @@ -51,9 +56,11 @@ for TM in tupleTMs


# Multiplication by numbers
*(a::$TM, b::T) where {T<:NumberNotSeries} = $TM(a.pol*b, b*a.rem, a.x0, a.dom)
*(a::$TM, b::T) where {T<:NumberNotSeries} = $TM(a.pol*b, b*remainder(a),
expansion_point(a), domain(a))

*(b::T, a::$TM) where {T<:NumberNotSeries} = $TM(a.pol*b, b*a.rem, a.x0, a.dom)
*(b::T, a::$TM) where {T<:NumberNotSeries} = $TM(a.pol*b, b*remainder(a),
expansion_point(a), domain(a))

# Multiplication
function *(a::$TM, b::$TM)
Expand All @@ -64,8 +71,10 @@ for TM in tupleTMs
aux = centered_dom(a)

# Returned polynomial
res = a.pol * b.pol
order = res.order
a_pol = polynomial(a)
b_pol = polynomial(b)
res = a_pol * b_pol
order = get_order(res)

# Remainder of the product
if $TM == TaylorModel1
Expand All @@ -75,7 +84,7 @@ for TM in tupleTMs
for k in order+1:rnegl_order
@inbounds for i = 0:k
(i > a_order || k-i > b_order) && continue
rnegl[k] += a.pol[i] * b.pol[k-i]
rnegl[k] += a_pol[i] * b_pol[k-i]
end
end

Expand All @@ -89,14 +98,14 @@ for TM in tupleTMs
for k in order+1:rnegl_order
@inbounds for i = 0:k
(i > a_order || k-i > b_order) && continue
rnegl[k-order-1] += a.pol[i] * b.pol[k-i]
rnegl[k-order-1] += a_pol[i] * b_pol[k-i]
end
end
Δnegl = rnegl(aux)
Δ = remainder_product(a, b, aux, Δnegl, order)
end

return $TM(res, Δ, a.x0, a.dom)
return $TM(res, Δ, expansion_point(a), domain(a))
end

# Division by numbers
Expand Down Expand Up @@ -126,7 +135,9 @@ end
function remainder_product(a, b, aux, Δnegl)
Δa = a.pol(aux)
Δb = b.pol(aux)
Δ = Δnegl + Δb * a.rem + Δa * b.rem + a.rem * b.rem
a_rem = remainder(a)
b_rem = remainder(b)
Δ = Δnegl + Δb * a_rem + Δa * b_rem + a_rem * b_rem
return Δ
end
function remainder_product(a::TaylorModel1{TaylorN{T}, S},
Expand All @@ -138,14 +149,18 @@ function remainder_product(a::TaylorModel1{TaylorN{T}, S},
auxQ = IntervalBox(-1 .. 1, Val(N))
Δa = a.pol(auxT)(auxQ)
Δb = b.pol(auxT)(auxQ)
Δ = Δnegl(auxQ) + Δb * a.rem + Δa * b.rem + a.rem * b.rem
a_rem = remainder(a)
b_rem = remainder(b)
Δ = Δnegl(auxQ) + Δb * a_rem + Δa * b_rem + a_rem * b_rem
return Δ
end
function remainder_product(a::TaylorModel1{TaylorModelN{N,T,S},S},
b::TaylorModel1{TaylorModelN{N,T,S},S}, aux, Δnegl) where {N,T,S}
Δa = a.pol(aux)
Δb = b.pol(aux)
Δ = Δnegl + Δb * a.rem + Δa * b.rem + a.rem * b.rem
a_rem = remainder(a)
b_rem = remainder(b)
Δ = Δnegl + Δb * a_rem + Δa * b_rem + a_rem * b_rem

# Evaluate at the TMN centered domain
auxN = centered_dom(a[0])
Expand All @@ -157,20 +172,23 @@ function remainder_product(a, b, aux, Δnegl, order)
Δa = a.pol(aux)
Δb = b.pol(aux)
V = aux^(order+1)
a_rem = remainder(a)
b_rem = remainder(b)
Δ = Δnegl + Δb * a.rem + Δa * b.rem + a.rem * b.rem * V
return Δ
end
function remainder_product(a::RTaylorModel1{TaylorN{T},S},
b::RTaylorModel1{TaylorN{T},S},
aux, Δnegl, order) where {T, S}
function remainder_product(a::RTaylorModel1{TaylorN{T},S}, b::RTaylorModel1{TaylorN{T},S},
aux, Δnegl, order) where {T, S}
N = get_numvars()
# An N-dimensional symmetrical IntervalBox is assumed
# to bound the TaylorN part
auxQ = symmetric_box(N, T)
Δa = a.pol(aux)(auxQ)
Δb = b.pol(aux)(auxQ)
V = aux^(order+1)
Δ = Δnegl(auxQ) + Δb * a.rem + Δa * b.rem + a.rem * b.rem * V
a_rem = remainder(a)
b_rem = remainder(b)
Δ = Δnegl(auxQ) + Δb * a_rem + Δa * b_rem + a_rem * b_rem * V
return Δ
end

Expand All @@ -196,10 +214,12 @@ function /(a::RTaylorModel1, b::RTaylorModel1)
#
order = get_order(a)
ared = truncate_taylormodel(
RTaylorModel1(Taylor1(a.pol.coeffs[bk+1:order+1]), a.rem, a.x0, a.dom), order-bk)
RTaylorModel1(Taylor1(a.pol.coeffs[bk+1:order+1]), remainder(a),
expansion_point(a), domain(a)), order-bk)
order = get_order(b)
bred = truncate_taylormodel(
RTaylorModel1(Taylor1(b.pol.coeffs[bk+1:order+1]), b.rem, b.x0, b.dom), order-bk)
RTaylorModel1(Taylor1(b.pol.coeffs[bk+1:order+1]), remainder(b),
expansion_point(b), domain(b)), order-bk)

return basediv( ared, bred )
end
Expand All @@ -215,43 +235,49 @@ function truncate_taylormodel(a::RTaylorModel1, m::Integer)
order = get_order(a)
m ≥ order && return a

apol = Taylor1(copy(a.pol.coeffs[1:m+1]))
bpol = Taylor1(copy(a.pol.coeffs))
apol_coeffs = polynomial(a).coeffs
apol = Taylor1(copy(apol_coeffs[1:m+1]))
bpol = Taylor1(copy(apol_coeffs))
aux = centered_dom(a)
Δnegl = bound_truncation(RTaylorModel1, bpol, aux, m)
Δ = Δnegl + a.rem * (aux)^(order-m)
return RTaylorModel1( apol, Δ, a.x0, a.dom )
Δ = Δnegl + remainder(a) * (aux)^(order-m)
return RTaylorModel1( apol, Δ, expansion_point(a), domain(a) )
end


# Same as above, for TaylorModelN
tmdata(f::TaylorModelN) = (f.x0, f.dom)
zero(a::TaylorModelN) = TaylorModelN(zero(a.pol), zero(a.rem), a.x0, a.dom)
one(a::TaylorModelN) = TaylorModelN(one(a.pol), zero(a.rem), a.x0, a.dom)
tmdata(f::TaylorModelN) = (expansion_point(f), domain(f))
zero(a::TaylorModelN) = TaylorModelN(zero(a.pol), zero(remainder(a)),
expansion_point(a), domain(a))
one(a::TaylorModelN) = TaylorModelN(one(a.pol), zero(remainder(a)),
expansion_point(a), domain(a))

# iszero(a::TaylorModelN) = iszero(a.pol) && iszero(zero(a.rem))
# iszero(a::TaylorModelN) = iszero(a.pol) && iszero(zero(remainder(a)))

findfirst(a::TaylorModelN) = findfirst(a.pol)

==(a::TaylorModelN, b::TaylorModelN) =
a.pol == b.pol && a.rem == b.rem && a.x0 == b.x0 && a.dom == b.dom
a.pol == b.pol && remainder(a) == remainder(b) && tmdata(a) == tmdata(b)
# expansion_point(a) == expansion_point(b) && domain(a) == domain(b)


# Addition and substraction
for op in (:+, :-)
@eval begin
$(op)(a::TaylorModelN) = TaylorModelN($(op)(a.pol), $(op)(a.rem), a.x0, a.dom)
$(op)(a::TaylorModelN) = TaylorModelN($(op)(a.pol), $(op)(remainder(a)),
expansion_point(a), domain(a))

function $(op)(a::TaylorModelN, b::TaylorModelN)
a, b = fixorder(a, b)
return TaylorModelN($(op)(a.pol,b.pol), $(op)(a.rem,b.rem), a.x0, a.dom)
return TaylorModelN($(op)(a.pol, b.pol), $(op)(remainder(a), remainder(b)),
expansion_point(a), domain(a))
end

$(op)(a::TaylorModelN, b::T) where {T<:NumberNotSeries} =
TaylorModelN($(op)(a.pol, b), a.rem, a.x0, a.dom)
TaylorModelN($(op)(a.pol, b), remainder(a), expansion_point(a), domain(a))

$(op)(b::T, a::TaylorModelN) where {T<:NumberNotSeries} =
TaylorModelN($(op)(b, a.pol), $(op)(a.rem), a.x0, a.dom)
$(op)(b::T, a::TaylorModelN) where {T<:NumberNotSeries} = TaylorModelN($(
op)(b, a.pol), $(op)(remainder(a)), expansion_point(a), domain(a))
end
end

Expand All @@ -266,17 +292,19 @@ function *(a::TaylorModelN, b::TaylorModelN)
aux = centered_dom(a)

# Returned polynomial
res = a.pol * b.pol
order = res.order
a_pol = polynomial(a)
b_pol = polynomial(b)
res = a_pol * b_pol
order = get_order(res)

# Remaing terms of the product
vv = Array{HomogeneousPolynomial{TS.numtype(res)}}(undef, rnegl_order-order)
suma = Array{promote_type(TS.numtype(res), TS.numtype(a.dom))}(undef, rnegl_order-order)
suma = Array{promote_type(TS.numtype(res), TS.numtype(domain(a)))}(undef, rnegl_order-order)
for k in order+1:rnegl_order
vv[k-order] = HomogeneousPolynomial(zero(TS.numtype(res)), k)
@inbounds for i = 0:k
(i > a_order || k-i > b_order) && continue
TaylorSeries.mul!(vv[k-order], a.pol[i], b.pol[k-i])
TaylorSeries.mul!(vv[k-order], a_pol[i], b_pol[k-i])
end
suma[k-order] = vv[k-order](aux)
end
Expand All @@ -285,15 +313,15 @@ function *(a::TaylorModelN, b::TaylorModelN)
Δnegl = sum( sort!(suma, by=abs2) )
Δ = remainder_product(a, b, aux, Δnegl)

return TaylorModelN(res, Δ, a.x0, a.dom)
return TaylorModelN(res, Δ, expansion_point(a), domain(a))
end


# Multiplication by numbers
function *(b::T, a::TaylorModelN) where {T<:NumberNotSeries}
pol = a.pol * b
rem = b * a.rem
return TaylorModelN(pol, rem, a.x0, a.dom)
rem = b * remainder(a)
return TaylorModelN(pol, rem, expansion_point(a), domain(a))
end

*(a::TaylorModelN, b::T) where {T<:NumberNotSeries} = b * a
Expand Down
24 changes: 13 additions & 11 deletions src/auxiliary.jl
Expand Up @@ -3,7 +3,7 @@
# getindex, fistindex, lastindex
for TM in (:TaylorModel1, :RTaylorModel1, :TaylorModelN)
@eval begin
copy(f::$TM) = $TM(copy(f.pol), f.rem, f.x0, f.dom)
copy(f::$TM) = $TM(copy(f.pol), remainder(f), expansion_point(f), domain(f))
@inline firstindex(a::$TM) = 0
@inline lastindex(a::$TM) = get_order(a)

Expand Down Expand Up @@ -35,22 +35,22 @@ for TM in tupleTMs
setindex!(a::$TM{T,S}, x::T, c::Colon) where {T<:Number, S} = a[c] .= x
setindex!(a::$TM{T,S}, x::Array{T,1}, c::Colon) where {T<:Number, S} = a[c] .= x

iscontained(a, tm::$TM) = a ∈ domain(tm)-tm.x0
iscontained(a::Interval, tm::$TM) = a ⊆ domain(tm)-tm.x0
iscontained(a, tm::$TM) = a ∈ centered_dom(tm)
iscontained(a::Interval, tm::$TM) = a ⊆ centered_dom(tm)
end
end
iscontained(a, tm::TaylorModelN) = a ∈ domain(tm)-tm.x0
iscontained(a::IntervalBox, tm::TaylorModelN) = a ⊆ domain(tm)-tm.x0
iscontained(a, tm::TaylorModelN) = a ∈ centered_dom(tm)
iscontained(a::IntervalBox, tm::TaylorModelN) = a ⊆ centered_dom(tm)


# fixorder and bound_truncation
for TM in tupleTMs
@eval begin
function fixorder(a::$TM, b::$TM)
@assert tmdata(a) == tmdata(b)
a.pol.order == b.pol.order && return a, b
get_order(a) == get_order(b) && return a, b

order = min(a.pol.order, b.pol.order)
order = min(get_order(a), get_order(b))
apol0, bpol0 = polynomial.((a, b))
apol, bpol = TaylorSeries.fixorder(apol0, bpol0)

Expand All @@ -59,7 +59,8 @@ for TM in tupleTMs
Δa = bound_truncation($TM, apol0, dom, order) + remainder(a)
Δb = bound_truncation($TM, bpol0, dom, order) + remainder(b)

return $TM(apol, Δa, a.x0, a.dom), $TM(bpol, Δb, b.x0, b.dom)
return $TM(apol, Δa, expansion_point(a), domain(a)),
$TM(bpol, Δb, expansion_point(b), domain(b))
end

function bound_truncation(::Type{$TM}, a::Taylor1, aux::Interval,
Expand Down Expand Up @@ -90,9 +91,9 @@ end

function fixorder(a::TaylorModelN, b::TaylorModelN)
@assert tmdata(a) == tmdata(b)
a.pol.order == b.pol.order && return a, b
get_order(a) == get_order(b) && return a, b

order = min(a.pol.order, b.pol.order)
order = min(get_order(a), get_order(b))
apol0, bpol0 = polynomial.((a, b))
apol, bpol = TaylorSeries.fixorder(apol0, bpol0)

Expand All @@ -101,7 +102,8 @@ function fixorder(a::TaylorModelN, b::TaylorModelN)
Δa = bound_truncation(TaylorModelN, apol0, dom, order) + remainder(a)
Δb = bound_truncation(TaylorModelN, bpol0, dom, order) + remainder(b)

return TaylorModelN(apol, Δa, a.x0, a.dom), TaylorModelN(bpol, Δb, b.x0, b.dom)
return TaylorModelN(apol, Δa, expansion_point(a), domain(a)),
TaylorModelN(bpol, Δb, expansion_point(b), domain(b))
end

function bound_truncation(::Type{TaylorModelN}, a::TaylorN, aux::IntervalBox,
Expand Down
2 changes: 1 addition & 1 deletion src/bounds.jl
Expand Up @@ -362,7 +362,7 @@ function quadratic_fast_bounder(fT::TaylorModel1)

cent_dom = dom - x00
x0 = -P[1] / (2 * P[2])
x = Taylor1(P.order)
x = Taylor1(get_order(P))
Qx0 = (x - x0) * P[2] * (x - x0)
bound_qfb = (P - Qx0)(cent_dom)
hi = sup(P(cent_dom))
Expand Down