|
| 1 | +from surprise import KNNBasic |
| 2 | +from surprise import Dataset |
| 3 | +from surprise import Reader |
| 4 | +import os |
| 5 | +from surprise import NMF |
| 6 | +#load data from a file |
| 7 | +file_path = os.path.expanduser('restaurant_ratings.txt') |
| 8 | +reader = Reader(line_format='user item rating timestamp', sep='\t') |
| 9 | +data = Dataset.load_from_file(file_path, reader=reader) |
| 10 | + |
| 11 | + |
| 12 | + |
| 13 | +from surprise import SVD |
| 14 | +from surprise import evaluate, print_perf |
| 15 | +import os |
| 16 | +''' |
| 17 | +print('') |
| 18 | +print('---------------SVD result-------------') |
| 19 | +data.split(n_folds=3) |
| 20 | +algo = SVD() |
| 21 | +perf = evaluate(algo, data, measures=['RMSE', 'MAE']) |
| 22 | +print_perf(perf) |
| 23 | +
|
| 24 | +
|
| 25 | +#########---------------PMF |
| 26 | +print('') |
| 27 | +print('---------------PMF result--------------') |
| 28 | +data.split(n_folds=3) |
| 29 | +algo = SVD(biased=False) |
| 30 | +perf = evaluate(algo, data, measures=['RMSE', 'MAE']) |
| 31 | +print_perf(perf) |
| 32 | +
|
| 33 | +##########--------------NMF |
| 34 | +print('') |
| 35 | +print('----------------NMF result--------------') |
| 36 | +data.split(n_folds=3) |
| 37 | +algo = KNNBasic(sim_options = {'user_based':True}) |
| 38 | +perf = evaluate(algo, data, measures=['RMSE', 'MAE']) |
| 39 | +print_perf(perf) |
| 40 | +
|
| 41 | +
|
| 42 | +##########--------------User Based Collaborative Filtering algorithm |
| 43 | +print('') |
| 44 | +print('User Based Collaborative Filtering algorithm result') |
| 45 | +data.split(n_folds=3) |
| 46 | +algo = KNNBasic(sim_options = {'user_based': False }) |
| 47 | +perf = evaluate(algo, data, measures=['RMSE', 'MAE']) |
| 48 | +print_perf(perf) |
| 49 | +
|
| 50 | +
|
| 51 | +
|
| 52 | +
|
| 53 | +##########--------------Item Based Collaborative Filtering algorithm |
| 54 | +print('') |
| 55 | +print('Item Based Collaborative Filtering algorithm result') |
| 56 | +data.split(n_folds=3) |
| 57 | +algo = KNNBasic(sim_options = {'user_based': False}) |
| 58 | +perf = evaluate(algo, data, measures=['RMSE', 'MAE']) |
| 59 | +print_perf(perf) |
| 60 | +
|
| 61 | +
|
| 62 | +##########--------MSD------User Based Collaborative Filtering algorithm |
| 63 | +print('') |
| 64 | +print('MSD----User Based Collaborative Filtering algorithm result') |
| 65 | +data.split(n_folds=3) |
| 66 | +algo = KNNBasic(sim_options = {'name':'MSD','user_based': True}) |
| 67 | +perf = evaluate(algo, data, measures=['RMSE', 'MAE']) |
| 68 | +print_perf(perf) |
| 69 | +
|
| 70 | +
|
| 71 | +##########--------cosin------User Based Collaborative Filtering algorithm |
| 72 | +print('') |
| 73 | +print('cosin----User Based Collaborative Filtering algorithm result') |
| 74 | +data.split(n_folds=3) |
| 75 | +algo = KNNBasic(sim_options = {'name':'cosine','user_based': True}) |
| 76 | +perf = evaluate(algo, data, measures=['RMSE', 'MAE']) |
| 77 | +print_perf(perf) |
| 78 | +
|
| 79 | +##########--------person------User Based Collaborative Filtering algorithm |
| 80 | +print('') |
| 81 | +print('Person sim----User Based Collaborative Filtering algorithm result') |
| 82 | +data.split(n_folds=3) |
| 83 | +algo = KNNBasic(sim_options = {'name':'pearson','user_based': True}) |
| 84 | +perf = evaluate(algo, data, measures=['RMSE', 'MAE']) |
| 85 | +print_perf(perf) |
| 86 | +
|
| 87 | +''' |
| 88 | + |
| 89 | + |
| 90 | + |
| 91 | +##########--------MSD------User Based Collaborative Filtering algorithm |
| 92 | +print('') |
| 93 | +print('10--Neighboors--User Based Collaborative Filtering algorithm result') |
| 94 | +data.split(n_folds=3) |
| 95 | +algo = KNNBasic(k=10, sim_options = {'name':'MSD', 'user_based':True }) |
| 96 | +perf = evaluate(algo, data, measures=['RMSE']) |
| 97 | +print_perf(perf) |
| 98 | + |
| 99 | + |
| 100 | +##########--------cosin------User Based Collaborative Filtering algorithm |
| 101 | +print('') |
| 102 | +print('10---Neighboors---Item Based Collaborative Filtering algorithm result') |
| 103 | +data.split(n_folds=3) |
| 104 | +algo = KNNBasic(k=10, sim_options = {'name':'MSD', 'user_based':False }) |
| 105 | +perf = evaluate(algo, data, measures=['RMSE']) |
| 106 | +print_perf(perf) |
| 107 | + |
| 108 | + |
| 109 | +##########--------MSD------User Based Collaborative Filtering algorithm |
| 110 | +print('') |
| 111 | +print('15--Neighboors--User Based Collaborative Filtering algorithm result') |
| 112 | +data.split(n_folds=3) |
| 113 | +algo = KNNBasic(k=10, sim_options = {'name':'MSD', 'user_based':True }) |
| 114 | +perf = evaluate(algo, data, measures=['RMSE']) |
| 115 | +print_perf(perf) |
| 116 | + |
| 117 | + |
| 118 | +##########--------cosin------User Based Collaborative Filtering algorithm |
| 119 | +print('') |
| 120 | +print('15---Neighboors---Item Based Collaborative Filtering algorithm result') |
| 121 | +data.split(n_folds=3) |
| 122 | +algo = KNNBasic(k=10, sim_options = {'name':'MSD', 'user_based':False }) |
| 123 | +perf = evaluate(algo, data, measures=['RMSE']) |
| 124 | +print_perf(perf) |
| 125 | + |
| 126 | + |
| 127 | +##########--------MSD------User Based Collaborative Filtering algorithm |
| 128 | +print('') |
| 129 | +print('25--Neighboors--User Based Collaborative Filtering algorithm result') |
| 130 | +data.split(n_folds=3) |
| 131 | +algo = KNNBasic(k=10, sim_options = {'name':'MSD', 'user_based':True }) |
| 132 | +perf = evaluate(algo, data, measures=['RMSE']) |
| 133 | +print_perf(perf) |
| 134 | + |
| 135 | + |
| 136 | +##########--------cosin------User Based Collaborative Filtering algorithm |
| 137 | +print('') |
| 138 | +print('25---Neighboors---Item Based Collaborative Filtering algorithm result') |
| 139 | +data.split(n_folds=3) |
| 140 | +algo = KNNBasic(k=10, sim_options = {'name':'MSD', 'user_based':False }) |
| 141 | +perf = evaluate(algo, data, measures=['RMSE']) |
| 142 | +print_perf(perf) |
| 143 | + |
| 144 | + |
| 145 | + |
| 146 | +##########--------MSD------User Based Collaborative Filtering algorithm |
| 147 | +print('') |
| 148 | +print('30--Neighboors--User Based Collaborative Filtering algorithm result') |
| 149 | +data.split(n_folds=3) |
| 150 | +algo = KNNBasic(k=10, sim_options = {'name':'MSD', 'user_based':True }) |
| 151 | +perf = evaluate(algo, data, measures=['RMSE']) |
| 152 | +print_perf(perf) |
| 153 | + |
| 154 | + |
| 155 | +##########--------cosin------User Based Collaborative Filtering algorithm |
| 156 | +print('') |
| 157 | +print('30---Neighboors---Item Based Collaborative Filtering algorithm result') |
| 158 | +data.split(n_folds=3) |
| 159 | +algo = KNNBasic(k=10, sim_options = {'name':'MSD', 'user_based':False }) |
| 160 | +perf = evaluate(algo, data, measures=['RMSE']) |
| 161 | +print_perf(perf) |
| 162 | + |
| 163 | + |
| 164 | + |
| 165 | + |
0 commit comments