Skip to content

A LoRaWAN library for compatible arduino board (Modified by the GLEE2023 Project at the Colorado Space Grant Consortium)

License

Notifications You must be signed in to change notification settings

GLEE2023/Beelan-LoRaWAN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LibraryBuild

Arduino LoRaWAN library by Beelan

Modified by the GLEE2023 Project

This repository contains the simple LoRaWAN library encapsulated to run in the generic platform, allowing using the SX1272, SX1276 transceivers and compatible modules (such as some HopeRF RFM9x modules).

This repository is all based on the library originally created by Ideetron B.V. This library is slightly modified and this repo, with the principal purpose to have an LoRaWAN MAC layer for arduino with an easy API.

Features

The arduino LoRaWAN library supports LoRaWAN Class A and Class C implementations operating in EU-868, AS-923, US-915 and AU-915 bands. Note that this library is fairly simple with the aim of demonstrating the LoRaWAN capabilities.

What certainly works:

  • Sending packets uplink, taking into account duty cycling.
  • Custom frequencies and datarate settings.
  • Receiving downlink packets in the RX1 window (EU-868, AS-923,US-915,AU-915).
  • Over-the-air activation (OTAA / joining) (EU-868, AS-923).
  • Class C operation.
  • Receiving downlink packets in the RX1 window (US-915).
  • Receiving downlink packets in the RX2 window.
  • Over-the-air activation (OTAA / joining) (US-915).

What has not been tested:

  • Receiving and processing MAC commands.

If you try one of these untested features and it works, be sure to let us know (creating a github issue is probably the best way for that).

Quick Installing

To install, use the Arduino Library Manager and search for "Beelan LoraWAN" and install the library.

Manual Installing

To install this library:

  • install it using the Arduino Library manager ("Sketch" -> "Include Library" -> "Manage Libraries..."), or
  • download a zipfile from github using the "Download ZIP" button and install it using the IDE ("Sketch" -> "Include Library" -> "Add .ZIP Library..."
  • clone this git repository into your sketchbook/libraries folder.

For more info, see https://www.arduino.cc/en/Guide/Libraries

Configuration

A number of features can be configured or disabled by editing the config.h file in the library folder. Unfortunately the Arduino environment does not offer any way to do this (compile-time) configuration from the sketch, so be careful to recheck your configuration when you switch between sketches or update the library.

At the very least, you should set the right type of board in config.h, most other values should be fine at their defaults.

When using the US_915 you need to select which sub-band you will use, by default it is sub-band 6.

Supported hardware

This library is intended to be used with plain LoRa transceivers, connecting to them using SPI. In particular, the SX1272 and SX1276 families are supported (which should include SX1273, SX1277, SX1278 and SX1279 which only differ in the available frequencies, bandwidths and spreading factors). It has been tested with both SX1272 and SX1276 chips, using the Semtech SX1272 evaluation board and the HopeRF RFM92 and RFM95 boards (which supposedly contain an SX1272 and SX1276 chip respectively).

Some of the supported pre-built board currently available in the market are:

This library has been tested using:

  • Arduino Uno
  • WeMos D1 R2 (ESP8266 family board)
  • ESP32
  • Electronic Cats CatWAN USB-Stick
  • Electronic Cats Bast-WAN (Based on SAMR34)
  • NINA B302 is NRF52840 core
  • STMDuino

Connections

To make this library work, your Arduino (or whatever Arduino-compatible board you are using) should be connected to the transceiver. The exact connections are a bit dependent on the transceiver board and Arduino used, so this section tries to explain what each connection is for and in what cases it is (not) required.

Pin mapping

As described above, most connections can use arbitrary I/O pins on the Arduino side. To tell the arduino LoRaWAN library about these, a pin mapping struct is used in the sketch file.

For example, this could look like this:

sRFM_pins RFM_pins = {
  	.CS = SS,
  	.RST = RFM_RST,
  	.DIO0 = RFM_DIO0,
  	.DIO1 = RFM_DIO1,
  	.DIO2 = RFM_DIO2,
  	.DIO5 = RFM_DIO5
}; 

API

See API.md.

Tests

Maintainer

Beelan invests time and resources providing this open source design, please support Beelan!

License

Most source files in this repository are made available under the MIT License. The examples which use a more liberal license. Some of the AES code is available under the LGPL. Refer to each individual source file for more details.

About

A LoRaWAN library for compatible arduino board (Modified by the GLEE2023 Project at the Colorado Space Grant Consortium)

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 82.5%
  • C 16.3%
  • Other 1.2%