You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
| DagsHub: a GitHub Supplement for Data Scientists and ML Engineers | [🔗](https://towardsdatascience.com/dagshub-a-github-supplement-for-data-scientists-and-ml-engineers-9ecaf49cc505) | [🔗](https://dagshub.com/khuyentran1401/dagshub-demo)
63
63
| 4 pre-commit Plugins to Automate Code Reviewing and Formatting in Python | [🔗](https://codecut.ai/4-pre-commit-plugins-to-automate-code-reviewing-and-formatting-in-python-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://github.com/khuyentran1401/Data-science/tree/master/productive_tools/precommit_examples) | [🔗](https://youtube.com/playlist?list=PLnK6m_JBRVNqskWiXLxx1QRDDng9O8Fsf)
64
64
| BentoML: Create an ML Powered Prediction Service in Minutes | [🔗](https://towardsdatascience.com/bentoml-create-an-ml-powered-prediction-service-in-minutes-23d135d6ca76) | [🔗](https://github.com/khuyentran1401/customer_segmentation/tree/bentoml_demo) | [🔗](https://youtu.be/7csscNQnbnI)
65
-
| How to Structure a Data Science Project for Maintainability (with DVC) | [🔗](https://codecut.ai/how-to-structure-a-data-science-project-for-readability-and-transparency-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://github.com/khuyentran1401/data-science-template/tree/dvc-poetry) | [🔗](https://youtu.be/TzvcPi3nsdw)
66
-
| How to Structure an ML Project for Reproducibility and Maintainability (with Prefect) | [🔗](https://codecut.ai/how-to-structure-an-ml-project-for-reproducibility-and-maintainability-3/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://github.com/khuyentran1401/data-science-template/tree/prefect)
65
+
| How to Structure a Data Science Project for Maintainability | [🔗](https://codecut.ai/how-to-structure-a-data-science-project-for-readability-and-transparency-2/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://github.com/khuyentran1401/data-science-template/tree/dvc-poetry) | [🔗](https://youtu.be/TzvcPi3nsdw)
67
66
| GitHub Actions in MLOps: Automatically Check and Deploy Your ML Model | [🔗](https://khuyentran1476.medium.com/github-actions-in-mlops-automatically-check-and-deploy-your-ml-model-9a281d7f3c84) | [🔗](https://github.com/khuyentran1401/employee-future-prediction)
68
67
| Create Robust Data Pipelines with Prefect, Docker, and GitHub | [🔗](https://towardsdatascience.com/create-robust-data-pipelines-with-prefect-docker-and-github-12b231ca6ed2) | [🔗](https://github.com/khuyentran1401/prefect-docker)
69
68
| Create a Maintainable Data Pipeline with Prefect and DVC | [🔗](https://towardsdatascience.com/create-a-maintainable-data-pipeline-with-prefect-and-dvc-1d691ea5bcea) | [🔗](https://github.com/khuyentran1401/prefect-dvc)
| How to Build a Fully Automated Data Drift Detection Pipeline | [🔗](https://codecut.ai/build-a-fully-automated-data-drift-detection-pipeline/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://github.com/khuyentran1401/detect-data-drift-pipeline) | [🔗](https://youtu.be/4w2ly3WuL40)
| How to Create Reusable Command-Line |[🔗](https://towardsdatascience.com/how-to-create-reusable-command-line-f9a2bb356bc9)|
108
112
| How to Strip Outputs and Execute Interactive Code in a Python Script | [🔗](https://towardsdatascience.com/how-to-strip-outputs-and-execute-interactive-code-in-a-python-script-6d4c5da3beb0) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/data_science_tools/strip_interactive_example.py)
109
113
| Sending Slack Notifications in Python with Prefect| [🔗](https://medium.com/the-prefect-blog/sending-slack-notifications-in-python-with-prefect-840a895f81c) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/data_science_tools/strip_interactive_example.py)
110
-
114
+
| Marimo: A Modern Notebook for Reproducible Data Science | [🔗](https://codecut.ai/marimo-a-modern-notebook-for-reproducible-data-science/)
| 3 Ways to Extract Features from Dates with Python | [🔗](https://towardsdatascience.com/3-ways-to-extract-features-from-dates-927bd89cd5b9) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/time_series/extract_features/extract_features_from_dates.ipynb)
200
204
| Similarity Encoding for Dirty Categories Using dirty_cat | [🔗](https://towardsdatascience.com/similarity-encoding-for-dirty-categories-using-dirty-cat-d9f0b581a552) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/feature_engineering/dirty_cat_example/employee_salaries.ipynb)
201
205
| Snorkel — A Human-In-The-Loop Platform to Build Training Data | [🔗](https://towardsdatascience.com/snorkel-programmatically-build-training-data-in-python-712fc39649fe) | [🔗](https://github.com/khuyentran1401/Data-science/tree/master/feature_engineering/snorkel_example) | [🔗](https://youtu.be/Prr53wXiHfM)
202
-
206
+
| Polars vs. Pandas: A Fast, Multi-Core Alternative for DataFrames | [🔗](https://codecut.ai/polars-vs-pandas-a-fast-multi-core-alternative-for-dataframes/)
0 commit comments