Skip to content

mpolinowski/keras_transfer_learning_2023

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 

Repository files navigation

jupyter
jupytext kernelspec
formats text_representation
ipynb,md
extension format_name format_version jupytext_version
.md
markdown
1.3
1.14.4
display_name language name
Python 3 (ipykernel)
python
python3

Keras Applications & Tensorflow Datasets

Using the EfficientNetB0 model from Keras applications with the Food-101 dataset from Tensorflow datasets to build a food image classifier prediction API.

import datetime
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import random
from sklearn.metrics import accuracy_score, classification_report
import tensorflow as tf
from tensorflow.keras import layers, mixed_precision
import tensorflow_datasets as tfds
# import helper functions from helper.py
from helper import (create_tensorboard_callback,
                    create_checkpoint_callback,
                    create_early_stop_callback,
                    create_reduce_learning_rate_callback,
                    plot_accuracy_curves,
                    combine_training_curves,
                    data_augmentation_layer_no_rescaling,
                    plot_confusion_matrix)
# global variables
SEED = 42
BATCH_SIZE = 32
IMG_DIM = 224

Tensorflow Datasets

pip install tensorflow-datasets

TFDS Overview

# list all available datasets
available_datasets = tfds.list_builders()
available_datasets

Downloading Datasets

# download the food-101 dataset (download size: 4.65 GiB)
# https://www.tensorflow.org/datasets/catalog/food101 

(train_data, test_data), ds_info = tfds.load(name="food101",
                                           split=["train", "validation"],
                                           shuffle_files=True,
                                           as_supervised=True,
                                           with_info=True)

# Dataset food101 downloaded and prepared to /home/myuser/tensorflow_datasets/food101/2.0.0.
# Subsequent calls will reuse this data.

Exploring the Dataset

# get features
print(ds_info.features)

# FeaturesDict({
#     'image': Image(shape=(None, None, 3), dtype=uint8),
#     'label': ClassLabel(shape=(), dtype=int64, num_classes=101),
# })

# get classnames
class_names = ds_info.features["label"].names
print(class_names[:5])
# ['apple_pie', 'baby_back_ribs', 'baklava', 'beef_carpaccio', 'beef_tartare']
# explore trainings data
print(train_data)
# <PrefetchDataset element_spec=(TensorSpec(shape=(None, None, 3), dtype=tf.uint8, name=None), TensorSpec(shape=(), dtype=tf.int64, name=None))>

# get one sample image
train_one_sample = train_data.take(1)
print(train_one_sample)
# <TakeDataset element_spec=(TensorSpec(shape=(None, None, 3), dtype=tf.uint8, name=None), TensorSpec(shape=(), dtype=tf.int64, name=None))>

for image, label in train_one_sample:
    print(f"""
        Image Shape: {image.shape}
        Image Datatype: {image.dtype}
        Class Tensor: {label}
        Classname: {class_names[label.numpy()]}
    """)

# images are:
# * 3 colour channels but not standardized to 224x224
# * datatype uint8 needs to be changed (float16/float32)
# * classes are not 1-hot-encoded => sparse-categorical-crossentropy loss-function needed

#     Image Shape: (384, 512, 3)
#     Image Datatype: <dtype: 'uint8'>
#     Class Tensor: 70
#     Classname: pad_thai
# what do the images look like?
image

# <tf.Tensor: shape=(384, 512, 3), dtype=uint8, numpy=
# array([[[230, 229, 183],
#         [231, 230, 184],
#         [232, 231, 183],

#        ...,
       
#         [243, 245, 224],
#         [244, 246, 225],
#         [245, 247, 226]]], dtype=uint8)>

## min/max values
tf.reduce_min(image), tf.reduce_max(image)

# colour values range from 0 - 255 -> needs to be normalized
# (<tf.Tensor: shape=(), dtype=uint8, numpy=0>,
#  <tf.Tensor: shape=(), dtype=uint8, numpy=255>)
# plot the image
plt.imshow(image.numpy())
plt.title(class_names[label.numpy()]+ " " + str(image.shape))
plt.axis('off')

Keras Applications & Tensorflow Datasets

Preprocess Dataset

  • Reshape image (x, y, 3) => (224, 224, 3)
  • Convert dType unit8 => float32
  • Normalize (not necessary for EfficientNet models)
def preprocess_image(image, label, image_shape=224):
    image = tf.image.resize(image, [image_shape, image_shape])
    # normalization not needed for efficientnet
    # image = image/255
    return tf.cast(image, tf.float32), label
# test preprocessing function
preprocessed_image = preprocess_image(image, class_names[label.numpy()], image_shape=IMG_DIM)
preprocessed_image

# (<tf.Tensor: shape=(224, 224, 3), dtype=float32, numpy=
#  array([[[229.46939 , 228.46939 , 181.7551  ],
#          [229.59184 , 228.94897 , 180.2347  ],
#          [224.14796 , 224.14796 , 171.71939 ],
 
#         ...,
        
#          [241.79082 , 243.79082 , 222.79082 ],
#          [241.66327 , 243.66327 , 222.66327 ],
#          [242.80103 , 244.80103 , 223.80103 ]]], dtype=float32)>,
#  'pad_thai')

Prepare Batched Training/Testing Pipeline

Data Performance

  • map preprocess function to dataset
  • set parallel calls to autotune = use all available threads
  • shuffle and batch dataset and set prefetch buffer to autotune
training_dataset = train_data.map(map_func=preprocess_image, num_parallel_calls=tf.data.AUTOTUNE)
training_dataset = training_dataset.shuffle(buffer_size=1000).batch(batch_size=BATCH_SIZE).prefetch(buffer_size=tf.data.AUTOTUNE)   

testing_dataset = test_data.map(map_func=preprocess_image, num_parallel_calls=tf.data.AUTOTUNE)
testing_dataset = testing_dataset.batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE)

training_dataset, testing_dataset
# (<PrefetchDataset element_spec=(TensorSpec(shape=(None, 224, 224, 3), dtype=tf.float32, name=None), TensorSpec(shape=(None,), dtype=tf.int64, name=None))>,
#  <PrefetchDataset element_spec=(TensorSpec(shape=(None, 224, 224, 3), dtype=tf.float32, name=None), TensorSpec(shape=(None,), dtype=tf.int64, name=None))>)

Tensorflow Callbacks

# import callbacks from helper.py

## INITIAL TEST
### TensorBoard
tensorboard_dir = '../tensorboard/food101'
experiment_name = 'efficientnetb0_food101_full'

tensorboard_callback = create_tensorboard_callback(tensorboard_dir, experiment_name)

### Checkpoints
checkpoint_dir = '../checkpoints/food101'

checkpoint_callback = create_checkpoint_callback(checkpoint_dir, experiment_name)

                                          
### Early Stop
early_stop_callback = create_early_stop_callback(monitor='val_loss',
                              min_delta=0.0001,
                              patience=10,
                              restore_best_weights=True)

## AUGMENTED TEST
### TensorBoard
experiment_name_augmented = 'efficientnetb0_food101_augmented_full'

tensorboard_augmented_callback = create_tensorboard_callback(tensorboard_dir, experiment_name_augmented)

### Checkpoints
checkpoint_augmented_callback = create_checkpoint_callback(checkpoint_dir, experiment_name_augmented)

                                          
### Reduce Learning Rate
reduce_learning_rate_callback = create_reduce_learning_rate_callback(monitor="val_loss",  
                                        factor=0.2,
                                        patience=2,
                                        min_lr=1e-7)

## V2 MODEL M TEST
### TensorBoard
experiment_name_v2 = 'efficientnetb0_food101_v2_full'

tensorboard_v2_callback = create_tensorboard_callback(tensorboard_dir, experiment_name_v2)

### Checkpoints
checkpoint_v2_callback = create_checkpoint_callback(checkpoint_dir, experiment_name_v2)  


## V2 MODEL B0 TEST
### TensorBoard
experiment_name_v2_b0 = 'efficientnetb0_food101_v2_b0_full'

tensorboard_v2_b0_callback = create_tensorboard_callback(tensorboard_dir, experiment_name_v2)

### Checkpoints
checkpoint_v2_b0_callback = create_checkpoint_callback(checkpoint_dir, experiment_name_v2)                                            

Mixed Precision Training

# configure mixed precision training
mixed_precision.set_global_policy("mixed_float16")
mixed_precision.global_policy()

# <Policy "mixed_float16">

# WARNING:tensorflow:Mixed precision compatibility check (mixed_float16): WARNING
# Your GPU may run slowly with dtype policy mixed_float16 because it does not have compute capability of at least 7.0. Your GPU:
#   NVIDIA GeForce GTX 1060 6GB, compute capability 6.1
# See https://developer.nvidia.com/cuda-gpus for a list of GPUs and their compute capabilities.
# load the base model
base_model = tf.keras.applications.EfficientNetB0(include_top=False)
base_model.trainable = False
# create functional model
inputs = layers.Input(shape=(IMG_DIM, IMG_DIM, 3), name="input_layer")
# normalization not needed for EfficientNet models
# x = layers.Rescaling(1./255)(x)
# freeze base layers in inference mode
x = base_model(inputs, training=False)
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(len(class_names))(x)
# mixed precision requires outputlayer to be of dtype = tf.float32
# above mixed mixed float16 / below float32 separation
outputs = layers.Activation("softmax", dtype=tf.float32, name="softmax_output_float32")(x)
model = tf.keras.Model(inputs, outputs)

# labels are not 1-hot encoded => sparse_categorical instead of categorical
model.compile(loss="sparse_categorical_crossentropy",
             optimizer= tf.keras.optimizers.Adam(learning_rate=1e-3),
             metrics=["accuracy"])
print(model.summary())

# Model: "model_1"
# _________________________________________________________________
#  Layer (type)                Output Shape              Param #   
# =================================================================
#  input_layer (InputLayer)    [(None, 224, 224, 3)]     0
#  efficientnetb0 (Functional)  (None, None, None, 1280)  4049571
#  global_average_pooling2d_3   (None, 1280)             0         
#  (GlobalAveragePooling2D)
#  dense_3 (Dense)             (None, 101)               129381
#  softmax_output_float32 (Act  (None, 101)              0         
#  ivation)
# =================================================================
# Total params: 4,178,952
# Trainable params: 129,381
# Non-trainable params: 4,049,571
# _________________________________________________________________

for layer in model.layers:
    print(layer.name, layer.trainable, layer.dtype, layer.dtype_policy)
    
# input_layer True float32 <Policy "float32">
# efficientnetb0 False float32 <Policy "mixed_float16">
# global_average_pooling2d_3 True float32 <Policy "mixed_float16">
# dense_3 True float32 <Policy "mixed_float16">
# softmax_output_float32 True float32 <Policy "float32">

Training Run

tf.random.set_seed(SEED)
feature_extraction_epochs = 5

feature_extraction_history = model.fit(training_dataset,
                                         epochs=feature_extraction_epochs,
                                         steps_per_epoch=len(training_dataset),
                                         validation_data=testing_dataset,
                                         # evaluate performance on 15% of the testing dataset
                                         validation_steps=int(0.15 * len(testing_dataset)),
                                         callbacks=[tensorboard_callback,
                                                    checkpoint_callback,
                                                    early_stop_callback])

# Epoch 1/5
# 221s 89ms/step - loss: 1.7176 - accuracy: 0.5821 - val_loss: 1.1405 - val_accuracy: 0.6891
# Epoch 2/5
# 206s 87ms/step - loss: 1.1998 - accuracy: 0.6892 - val_loss: 1.0268 - val_accuracy: 0.7156
# Epoch 3/5
# 215s 91ms/step - loss: 1.0541 - accuracy: 0.7243 - val_loss: 0.9917 - val_accuracy: 0.7317
# Epoch 4/5
# 216s 91ms/step - loss: 0.9598 - accuracy: 0.7468 - val_loss: 0.9809 - val_accuracy: 0.7296
# Epoch 5/5
# 213s 90ms/step - loss: 0.8884 - accuracy: 0.7657 - val_loss: 0.9658 - val_accuracy: 0.7378
feature_extraction_results = model.evaluate(testing_dataset)
print(feature_extraction_results)

# [0.9763504266738892, 0.7352079153060913]

Model Fine-tuning

# unfreeze entire model
base_model.trainable = True

# keep only the last 5 layers trainable
for layer in base_model.layers[:-5]:
    layer.trainable = False
# recompile the model with the new basemodel
### to prevent overfitting / to better hold on to pre-training
### the learning rate during fine-tuning should be lowered 10x
### default Adam(lr)=1e-3 => 1e-4
model.compile(loss='sparse_categorical_crossentropy',
               optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
               metrics=['accuracy'])
# continue training
tf.random.set_seed(SEED)
fine_tuning_epochs = feature_extraction_epochs + 5

fine_tuning_history = model.fit(
                            training_dataset,
                            epochs=fine_tuning_epochs,
                            # start from last pre-training checkpoint
                            # training from epoch 6 - 10
                            initial_epoch = feature_extraction_history.epoch[-1],
                            steps_per_epoch=len(training_dataset),
                            validation_data=testing_dataset,
                            # evaluate performance on 15% of the testing dataset
                            validation_steps=int(0.15 * len(testing_dataset)),
                            callbacks=[tensorboard_callback,
                                       checkpoint_callback])

# Epoch 5/10
# 227s 93ms/step - loss: 0.7658 - accuracy: 0.7958 - val_loss: 0.9151 - val_accuracy: 0.7476
# Epoch 6/10
# 226s 95ms/step - loss: 0.6486 - accuracy: 0.8283 - val_loss: 0.9096 - val_accuracy: 0.7476
# Epoch 7/10
# 225s 95ms/step - loss: 0.5643 - accuracy: 0.8527 - val_loss: 0.9090 - val_accuracy: 0.7516
# Epoch 8/10
# 225s 95ms/step - loss: 0.4946 - accuracy: 0.8738 - val_loss: 0.9063 - val_accuracy: 0.7564
# Epoch 9/10
# 231s 97ms/step - loss: 0.4352 - accuracy: 0.8914 - val_loss: 0.9164 - val_accuracy: 0.7585
# Epoch 10/10
# 233s 98ms/step - loss: 0.3821 - accuracy: 0.9061 - val_loss: 0.9256 - val_accuracy: 0.7569
# evaluate performance on whole dataset
fine_tuning_results = model.evaluate(testing_dataset)
print(fine_tuning_results)

# Feature Extraction
# [0.9763504266738892, 0.7352079153060913]
# Fine-Tuning
# [0.9353731274604797, 0.7551287412643433]

Model Evaluation

Accuracy and Loss

# print accuracy curves
plot_accuracy_curves(feature_extraction_history, "Feature Extraction", fine_tuning_history, "Fine-Tuning")

Keras Applications & Tensorflow Datasets

# the validation accuracy increase keeps slowing while training
# accuracy goes up this points to an overfitting problem
combine_training_curves(feature_extraction_history, fine_tuning_history, pretraining_epochs=5)

Keras Applications & Tensorflow Datasets

Predictions

y_pred = []  # store predicted labels
y_true = []  # store true labels

# iterate over the dataset
for image_batch, label_batch in testing_dataset:   # use dataset.unbatch() with repeat
   # append true labels
   y_true.append(label_batch)
   # compute predictions
   preds = model.predict(image_batch)
   # append predicted labels
   y_pred.append(np.argmax(preds, axis = - 1))

# convert the true and predicted labels into tensors
correct_labels = tf.concat([item for item in y_true], axis = 0)
predicted_labels = tf.concat([item for item in y_pred], axis = 0)

correct_labels, predicted_labels

# (<tf.Tensor: shape=(25250,), dtype=int64, numpy=array([37, 99, 40, ..., 56, 46, 89])>,
#  <tf.Tensor: shape=(25250,), dtype=int64, numpy=array([37, 36, 40, ..., 11, 46, 89])>)
plot_confusion_matrix(y_pred=predicted_labels,
                      y_true=correct_labels,
                      classes=class_names,
                      figsize = (88, 88),
                      text_size=8)

Keras Applications & Tensorflow Datasets

# Load TensorBoard
%load_ext tensorboard
%tensorboard --logdir '../tensorboard/food101/'

Keras Applications & Tensorflow Datasets

Keras Applications & Tensorflow Datasets

Input Data Augmentation

Using Tensorflow image augmentation function to "virtually" diversify the dataset and tackling the overfitting issue.

# helper function to create an augmented model
data_augmentation_layer_no_rescaling = tf.keras.Sequential([
    tf.keras.layers.RandomFlip("horizontal_and_vertical"),
    tf.keras.layers.RandomRotation(0.2),
    tf.keras.layers.RandomZoom(0.2),
    tf.keras.layers.RandomTranslation(
            height_factor=(-0.2, 0.3),
            width_factor=(-0.2, 0.3),
            fill_mode='reflect',
            interpolation='bilinear'),
    tf.keras.layers.RandomContrast(0.2),
    tf.keras.layers.RandomBrightness(0.2)
], name="data_augmentation")
# load the base model a second time
base_model_augmented = tf.keras.applications.EfficientNetB0(include_top=False)
base_model_augmented.trainable = False
# create augmented functional model
inputs = layers.Input(shape=(IMG_DIM, IMG_DIM, 3), name="input_layer")
x = data_augmentation_layer_no_rescaling(inputs)
# normalization not needed for EfficientNet models
# x = layers.Rescaling(1./255)(x)
# freeze base layers in inference mode
x = base_model_augmented(x, training=False)
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(len(class_names))(x)
# mixed precision requires outputlayer to be of dtype = tf.float32
# above mixed mixed float16 / below float32 separation
outputs = layers.Activation("softmax", dtype=tf.float32, name="softmax_output_float32")(x)
model2_augmented = tf.keras.Model(inputs, outputs)

# labels are not 1-hot encoded => sparse_categorical instead of categorical
model2_augmented.compile(loss="sparse_categorical_crossentropy",
             optimizer= tf.keras.optimizers.Adam(learning_rate=1e-3),
             metrics=["accuracy"])
tf.random.set_seed(SEED)
feature_extraction_augmented_epochs = 5

feature_extraction_augmented_history = model2_augmented.fit(training_dataset,
                                             epochs=feature_extraction_epochs,
                                             steps_per_epoch=len(training_dataset),
                                             validation_data=testing_dataset,
                                             # evaluate performance on 15% of the testing dataset
                                             validation_steps=int(0.15 * len(testing_dataset)),
                                             callbacks=[tensorboard_augmented_callback,
                                                        checkpoint_augmented_callback,
                                                        reduce_learning_rate_callback,
                                                        early_stop_callback])

# Epoch 1/5
# 2368/2368 [==============================] - 647s 269ms/step - loss: 2.5783 - accuracy: 0.3880 - val_loss: 1.6074 - val_accuracy: 0.5792 - lr: 0.0010
# Epoch 2/5
# 591s 249ms/step - loss: 2.0982 - accuracy: 0.4789 - val_loss: 1.4961 - val_accuracy: 0.5927 - lr: 0.0010
# Epoch 3/5
# 581s 245ms/step - loss: 1.9760 - accuracy: 0.5060 - val_loss: 1.4502 - val_accuracy: 0.6001 - lr: 0.0010
# Epoch 4/5
# 580s 245ms/step - loss: 1.9136 - accuracy: 0.5202 - val_loss: 1.4311 - val_accuracy: 0.6147 - lr: 0.0010
# Epoch 5/5
# 594s 251ms/step - loss: 1.8632 - accuracy: 0.5288 - val_loss: 1.4012 - val_accuracy: 0.6160 - lr: 0.0010
# unfreeze entire model
base_model_augmented.trainable = True

# keep only the last 5 layers trainable
for layer in base_model_augmented.layers[:-5]:
    layer.trainable = False
# recompile the model with the new basemodel
model2_augmented.compile(loss='sparse_categorical_crossentropy',
               optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
               metrics=['accuracy'])
# continue training
tf.random.set_seed(SEED)
fine_tuning_augmented_epochs = feature_extraction_augmented_epochs + 5

fine_tuning_augmented_history = model2_augmented.fit(
                            training_dataset,
                            epochs=fine_tuning_augmented_epochs,
                            # start from last pre-training checkpoint
                            # training from epoch 6 - 10
                            initial_epoch = feature_extraction_augmented_history.epoch[-1],
                            steps_per_epoch=len(training_dataset),
                            validation_data=testing_dataset,
                            # evaluate performance on 15% of the testing dataset
                            validation_steps=int(0.15 * len(testing_dataset)),
                            callbacks=[tensorboard_augmented_callback,
                                       checkpoint_augmented_callback,
                                       reduce_learning_rate_callback,
                                       early_stop_callback])

# Epoch 5/10
# 2368/2368 [==============================] - 699s 290ms/step - loss: 1.6879 - accuracy: 0.5703 - val_loss: 1.3540 - val_accuracy: 0.6316 - lr: 1.0000e-04
# Epoch 6/10
# 661s 279ms/step - loss: 1.5625 - accuracy: 0.5996 - val_loss: 1.3304 - val_accuracy: 0.6380 - lr: 1.0000e-04
# Epoch 7/10
# 712s 300ms/step - loss: 1.4884 - accuracy: 0.6163 - val_loss: 1.3158 - val_accuracy: 0.6414 - lr: 1.0000e-04
# Epoch 8/10
# 710s 299ms/step - loss: 1.4279 - accuracy: 0.6287 - val_loss: 1.2938 - val_accuracy: 0.6486 - lr: 1.0000e-04
# Epoch 9/10
# 713s 300ms/step - loss: 1.3782 - accuracy: 0.6402 - val_loss: 1.2849 - val_accuracy: 0.6499 - lr: 1.0000e-04
# Epoch 10/10
# 714s 301ms/step - loss: 1.3448 - accuracy: 0.6497 - val_loss: 1.2670 - val_accuracy: 0.6510 - lr: 1.0000e-04

Model Evaluation

Accuracy and Loss

# the validation accuracy increase keeps slowing while training
combine_training_curves(feature_extraction_augmented_history, fine_tuning_augmented_history, pretraining_epochs=5)

Keras Applications & Tensorflow Datasets

Keras Applications & Tensorflow Datasets

Base Model Complexity

Even though the model above lead to a worse accuracy over 5+5 epochs it seems to have solved the overfitting issue. Both the training and validation metrics stick together and keep on improving slowly. We can keep this model running for longer time and the accuracy will keep on rising.

But before running this on a night shift I want to first try out a slightly complexer version of the EfficientNet model. I also noticed that I used version 1 instead of version 2.

Version 2 of EfficientNet offers a small, medium and large model. According to this paper the medium model offers a much higher accuracy without a significant increase in parameters:

EfficientNetV2: Smaller Models and Faster Training

# load the version 2 base model
base_model_v2 = tf.keras.applications.efficientnet_v2.EfficientNetV2M(include_top=False)
base_model_v2.trainable = False
# create augmented functional model
inputs = layers.Input(shape=(IMG_DIM, IMG_DIM, 3), name="input_layer")
x = data_augmentation_layer_no_rescaling(inputs)
# normalization not needed for EfficientNet models
# x = layers.Rescaling(1./255)(x)
# freeze base layers in inference mode
x = base_model_v2(x, training=False)
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(len(class_names))(x)
# mixed precision requires outputlayer to be of dtype = tf.float32
# above mixed mixed float16 / below float32 separation
outputs = layers.Activation("softmax", dtype=tf.float32, name="softmax_output_float32")(x)
model_v2 = tf.keras.Model(inputs, outputs)

# labels are not 1-hot encoded => sparse_categorical instead of categorical
model_v2.compile(loss="sparse_categorical_crossentropy",
             optimizer= tf.keras.optimizers.Adam(learning_rate=1e-3),
             metrics=["accuracy"])
tf.random.set_seed(SEED)
feature_extraction_v2_epochs = 5

feature_extraction_v2_history = model_v2.fit(training_dataset,
                                             epochs=feature_extraction_v2_epochs,
                                             steps_per_epoch=len(training_dataset),
                                             validation_data=testing_dataset,
                                             # evaluate performance on 15% of the testing dataset
                                             validation_steps=int(0.15 * len(testing_dataset)),
                                             callbacks=[tensorboard_v2_callback,
                                                        checkpoint_v2_callback,
                                                        reduce_learning_rate_callback,
                                                        early_stop_callback])


# Epoch 1/5
# 1205s 498ms/step - loss: 2.7086 - accuracy: 0.3647 - val_loss: 1.6947 - val_accuracy: 0.5535 - lr: 0.0010
# Epoch 2/5
# 1166s 492ms/step - loss: 2.2371 - accuracy: 0.4511 - val_loss: 1.5539 - val_accuracy: 0.5842 - lr: 0.0010
# Epoch 3/5
# 1168s 493ms/step - loss: 2.1267 - accuracy: 0.4738 - val_loss: 1.4823 - val_accuracy: 0.6030 - lr: 0.0010
# Epoch 4/5
# 1166s 492ms/step - loss: 2.0640 - accuracy: 0.4877 - val_loss: 1.4556 - val_accuracy: 0.6102 - lr: 0.0010
# Epoch 5/5
# 1156s 488ms/step - loss: 2.0266 - accuracy: 0.4951 - val_loss: 1.4178 - val_accuracy: 0.6147 - lr: 0.0010
# unfreeze entire model
base_model_v2.trainable = True

# keep only the last 5 layers trainable
for layer in base_model_v2.layers[:-5]:
    layer.trainable = False
# recompile the model with the new basemodel
model_v2.compile(loss='sparse_categorical_crossentropy',
               optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
               metrics=['accuracy'])
# continue training
tf.random.set_seed(SEED)
fine_tuning_v2_epochs = feature_extraction_v2_epochs + 25

fine_tuning_v2_history = model_v2.fit(
                            training_dataset,
                            epochs=fine_tuning_v2_epochs,
                            # start from last pre-training checkpoint
                            # training from epoch 6 - 10
                            initial_epoch = feature_extraction_v2_history.epoch[-1],
                            steps_per_epoch=len(training_dataset),
                            validation_data=testing_dataset,
                            # evaluate performance on 15% of the testing dataset
                            validation_steps=int(0.15 * len(testing_dataset)),
                            callbacks=[tensorboard_v2_callback,
                                       checkpoint_v2_callback,
                                       reduce_learning_rate_callback,
                                       early_stop_callback])

# Epoch 5/10
# 1150s 478ms/step - loss: 2.1729 - accuracy: 0.4661 - val_loss: 1.3997 - val_accuracy: 0.6247 - lr: 1.0000e-04
# Epoch 6/30
# 1140s 481ms/step - loss: 2.0175 - accuracy: 0.4981 - val_loss: 1.3611 - val_accuracy: 0.6356 - lr: 1.0000e-04
# Epoch 7/30
# 1085s 457ms/step - loss: 1.9182 - accuracy: 0.5221 - val_loss: 1.3154 - val_accuracy: 0.6446 - lr: 1.0000e-04
# Epoch 8/30
# 1081s 456ms/step - loss: 1.8463 - accuracy: 0.5368 - val_loss: 1.2975 - val_accuracy: 0.6541 - lr: 1.0000e-04
# Epoch 9/30
# 1077s 454ms/step - loss: 1.7945 - accuracy: 0.5471 - val_loss: 1.2966 - val_accuracy: 0.6568 - lr: 1.0000e-04
# Epoch 10/30
# 1074s 453ms/step - loss: 1.7426 - accuracy: 0.5586 - val_loss: 1.2826 - val_accuracy: 0.6523 - lr: 1.0000e-04
# Epoch 11/30
# 1057s 446ms/step - loss: 1.6953 - accuracy: 0.5717 - val_loss: 1.2742 - val_accuracy: 0.6547 - lr: 1.0000e-04
# Epoch 12/30
# 1076s 454ms/step - loss: 1.6599 - accuracy: 0.5778 - val_loss: 1.2551 - val_accuracy: 0.6623 - lr: 1.0000e-04
# Epoch 13/30
# 1076s 454ms/step - loss: 1.6280 - accuracy: 0.5824 - val_loss: 1.2380 - val_accuracy: 0.6653 - lr: 1.0000e-04
# Epoch 14/30
# 1077s 454ms/step - loss: 1.5995 - accuracy: 0.5925 - val_loss: 1.2231 - val_accuracy: 0.6684 - lr: 1.0000e-04
# Epoch 15/30
# 1078s 454ms/step - loss: 1.5727 - accuracy: 0.5966 - val_loss: 1.2322 - val_accuracy: 0.6647 - lr: 1.0000e-04
# Epoch 16/30
# ETA: 0s - loss: 1.5447 - accuracy: 0.6035
# Epoch 16: ReduceLROnPlateau reducing learning rate to 1.9999999494757503e-05.
# 1068s 451ms/step - loss: 1.5447 - accuracy: 0.6035 - val_loss: 1.2362 - val_accuracy: 0.6660 - lr: 1.0000e-04
# Epoch 17/30
# 1066s 450ms/step - loss: 1.4947 - accuracy: 0.6157 - val_loss: 1.2064 - val_accuracy: 0.6724 - lr: 2.0000e-05
# Epoch 18/30
# 1072s 452ms/step - loss: 1.4733 - accuracy: 0.6204 - val_loss: 1.2000 - val_accuracy: 0.6766 - lr: 2.0000e-05
# Epoch 19/30
# 1066s 450ms/step - loss: 1.4703 - accuracy: 0.6206 - val_loss: 1.1957 - val_accuracy: 0.6785 - lr: 2.0000e-05
# Epoch 20/30
# 1072s 452ms/step - loss: 1.4599 - accuracy: 0.6233 - val_loss: 1.1900 - val_accuracy: 0.6822 - lr: 2.0000e-05
# Epoch 21/30
# 1075s 453ms/step - loss: 1.4523 - accuracy: 0.6256 - val_loss: 1.1865 - val_accuracy: 0.6819 - lr: 2.0000e-05
# Epoch 22/30
# 1075s 454ms/step - loss: 1.4456 - accuracy: 0.6251 - val_loss: 1.1806 - val_accuracy: 0.6806 - lr: 2.0000e-05
# Epoch 23/30
# 1075s 454ms/step - loss: 1.4428 - accuracy: 0.6252 - val_loss: 1.1841 - val_accuracy: 0.6838 - lr: 2.0000e-05
# Epoch 24/30
# ETA: 0s - loss: 1.4355 - accuracy: 0.6271
# Epoch 24: ReduceLROnPlateau reducing learning rate to 3.999999898951501e-06.
# 1072s 452ms/step - loss: 1.4355 - accuracy: 0.6271 - val_loss: 1.1831 - val_accuracy: 0.6790 - lr: 2.0000e-05
# Epoch 25/30
# 1082s 457ms/step - loss: 1.4297 - accuracy: 0.6292 - val_loss: 1.1781 - val_accuracy: 0.6838 - lr: 4.0000e-06
# Epoch 26/30
# 1064s 449ms/step - loss: 1.4326 - accuracy: 0.6290 - val_loss: 1.1777 - val_accuracy: 0.6811 - lr: 4.0000e-06
# Epoch 27/30
# 1069s 451ms/step - loss: 1.4278 - accuracy: 0.6313 - val_loss: 1.1799 - val_accuracy: 0.6814 - lr: 4.0000e-06
# Epoch 28/30
# ETA: 0s - loss: 1.4149 - accuracy: 0.6343
# Epoch 28: ReduceLROnPlateau reducing learning rate to 7.999999979801942e-07.
# 1082s 457ms/step - loss: 1.4149 - accuracy: 0.6343 - val_loss: 1.1794 - val_accuracy: 0.6846 - lr: 4.0000e-06
# Epoch 29/30
# 1082s 456ms/step - loss: 1.4229 - accuracy: 0.6332 - val_loss: 1.1767 - val_accuracy: 0.6854 - lr: 8.0000e-07
# Epoch 30/30
# 1081s 456ms/step - loss: 1.4176 - accuracy: 0.6320 - val_loss: 1.1780 - val_accuracy: 0.6851 - lr: 8.0000e-07

Model Evaluation

Accuracy and Loss

# the validation accuracy increase keeps slowing while training
combine_training_curves(feature_extraction_v2_history, fine_tuning_v2_history, pretraining_epochs=5)

EfficientNetV2: Smaller Models and Faster Training

Predictions

y_pred = []  # store predicted labels
y_true = []  # store true labels

# iterate over the dataset
for image_batch, label_batch in testing_dataset:   # use dataset.unbatch() with repeat
   # append true labels
   y_true.append(label_batch)
   # compute predictions
   preds = model_v2.predict(image_batch)
   # append predicted labels
   y_pred.append(np.argmax(preds, axis = - 1))

# convert the true and predicted labels into tensors
correct_labels = tf.concat([item for item in y_true], axis = 0)
predicted_labels = tf.concat([item for item in y_pred], axis = 0)
plot_confusion_matrix(y_pred=predicted_labels,
                      y_true=correct_labels,
                      classes=class_names,
                      figsize = (88, 88),
                      text_size=8)

EfficientNetV2: Smaller Models and Faster Training

# Load TensorBoard
%load_ext tensorboard
%tensorboard --logdir '../tensorboard/food101/'

EfficientNetV2: Smaller Models and Faster Training

EfficientNetV2: Smaller Models and Faster Training

# save the full model
model_v2.save('../saved_models/food101_env2m_30epochs')

# TypeError: Unable to serialize [2.0896919 2.1128857 2.1081853] to JSON. Unrecognized type <class 'tensorflow.python.framework.ops.EagerTensor'>.
# tf.__version__ '2.11.0'

Decreasing Complexity

In the last experiment I changed 2 parameters:

  1. EfficientNet v1 => EfficientNet v2
  2. EfficientNetB0 => EfficientNetM

And the results I am seeing a very similar. So now I want to try EfficientNetB0 v2 to decrease the complexity of the model and see how this affects the performance.

# load the version 2 base model
base_model_v2_b0 = tf.keras.applications.efficientnet_v2.EfficientNetV2B0(include_top=False)
base_model_v2_b0.trainable = False
# create augmented functional model
inputs = layers.Input(shape=(IMG_DIM, IMG_DIM, 3), name="input_layer")
x = data_augmentation_layer_no_rescaling(inputs)
# normalization not needed for EfficientNet models
# x = layers.Rescaling(1./255)(x)
# freeze base layers in inference mode
x = base_model_v2_b0(x, training=False)
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(len(class_names))(x)
# mixed precision requires outputlayer to be of dtype = tf.float32
# above mixed mixed float16 / below float32 separation
outputs = layers.Activation("softmax", dtype=tf.float32, name="softmax_output_float32")(x)
model_v2_b0 = tf.keras.Model(inputs, outputs)

# labels are not 1-hot encoded => sparse_categorical instead of categorical
model_v2_b0.compile(loss="sparse_categorical_crossentropy",
             optimizer= tf.keras.optimizers.Adam(learning_rate=1e-3),
             metrics=["accuracy"])
tf.random.set_seed(SEED)
feature_extraction_v2_b0_epochs = 10

feature_extraction_v2_b0_history = model_v2_b0.fit(training_dataset,
                                             epochs=feature_extraction_v2_b0_epochs,
                                             steps_per_epoch=len(training_dataset),
                                             validation_data=testing_dataset,
                                             # evaluate performance on 15% of the testing dataset
                                             validation_steps=int(0.15 * len(testing_dataset)),
                                             callbacks=[tensorboard_v2_b0_callback,
                                                        checkpoint_v2_b0_callback,
                                                        reduce_learning_rate_callback,
                                                        early_stop_callback])

# Epoch 1/15
# 665s 275ms/step - loss: 2.6137 - accuracy: 0.3792 - val_loss: 1.6742 - val_accuracy: 0.5556 - lr: 0.0010
# Epoch 2/10
# 651s 275ms/step - loss: 2.1238 - accuracy: 0.4749 - val_loss: 1.5503 - val_accuracy: 0.5805 - lr: 0.0010
# Epoch 3/10
# 645s 272ms/step - loss: 1.9973 - accuracy: 0.5008 - val_loss: 1.4839 - val_accuracy: 0.6004 - lr: 0.0010
# Epoch 4/10
# 624s 263ms/step - loss: 1.9342 - accuracy: 0.5164 - val_loss: 1.4592 - val_accuracy: 0.5985 - lr: 0.0010
# Epoch 5/10
# 636s 268ms/step - loss: 1.8739 - accuracy: 0.5274 - val_loss: 1.4295 - val_accuracy: 0.6099 - lr: 0.0010
# Epoch 6/10
# 623s 263ms/step - loss: 1.8362 - accuracy: 0.5380 - val_loss: 1.4357 - val_accuracy: 0.6096 - lr: 0.0010
# Epoch 7/10
# 570s 240ms/step - loss: 1.8121 - accuracy: 0.5416 - val_loss: 1.3968 - val_accuracy: 0.6200 - lr: 0.0010
# Epoch 8/10
# 566s 239ms/step - loss: 1.7965 - accuracy: 0.5447 - val_loss: 1.3965 - val_accuracy: 0.6176 - lr: 0.0010
# Epoch 9/10
# 555s 234ms/step - loss: 1.7713 - accuracy: 0.5497 - val_loss: 1.4094 - val_accuracy: 0.6104 - lr: 0.0010
# Epoch 10/10
# ETA: 0s - loss: 1.7563 - accuracy: 0.5540
# Epoch 10: ReduceLROnPlateau reducing learning rate to 0.00020000000949949026.
# 548s 231ms/step - loss: 1.7562 - accuracy: 0.5540 - val_loss: 1.4167 - val_accuracy: 0.6152 - lr: 0.0010
# unfreeze entire model
base_model_v2_b0.trainable = True

# keep only the last 5 layers trainable
for layer in base_model_v2_b0.layers[:-5]:
    layer.trainable = False
# recompile the model with the new basemodel
model_v2_b0.compile(loss='sparse_categorical_crossentropy',
               optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
               metrics=['accuracy'])
# continue training
tf.random.set_seed(SEED)
fine_tuning_v2_b0_epochs = feature_extraction_v2_b0_epochs + 25

fine_tuning_v2_b0_history = model_v2_b0.fit(
                            training_dataset,
                            epochs=fine_tuning_v2_b0_epochs,
                            # start from last pre-training checkpoint
                            # training from epoch 6 - 10
                            initial_epoch = feature_extraction_v2_b0_history.epoch[-1],
                            steps_per_epoch=len(training_dataset),
                            validation_data=testing_dataset,
                            # evaluate performance on 15% of the testing dataset
                            validation_steps=int(0.15 * len(testing_dataset)),
                            callbacks=[tensorboard_v2_b0_callback,
                                       checkpoint_v2_b0_callback,
                                       reduce_learning_rate_callback,
                                       early_stop_callback])
# save the full model
model_v2_b0.save('../saved_models/food101_env2b0_35epochs')

Model Training Evaluation

Accuracy and Loss

combine_training_curves(feature_extraction_v2_b0_history, fine_tuning_v2_b0_history, pretraining_epochs=10)

Keras Applications & Tensorflow Datasets

Test Prediction Evaluation

# confusion matrix
y_pred = []  # store predicted labels
y_true = []  # store true labels

# iterate over the dataset
for image_batch, label_batch in testing_dataset:   # use dataset.unbatch() with repeat
   # append true labels
   y_true.append(label_batch)
   # compute predictions
   preds = model_v2_b0.predict(image_batch)
   # append predicted labels
   y_pred.append(np.argmax(preds, axis = - 1))

# convert the true and predicted labels into tensors
correct_labels = tf.concat([item for item in y_true], axis = 0)
predicted_labels = tf.concat([item for item in y_pred], axis = 0)

Confusion Matrix

plot_confusion_matrix(y_pred=predicted_labels,
                      y_true=correct_labels,
                      classes=class_names,
                      figsize = (88, 88),
                      text_size=8)

Keras Applications & Tensorflow Datasets

F1 Scores for Labels

# visualizing the F1 scores per class
classification_report_dict = classification_report(y_true=predicted_labels,
                                                  y_pred=correct_labels,
                                                  output_dict=True)


# extract f1-scores from dictionary
class_f1_scores = {}

## loop through classification report
for k, v in classification_report_dict.items():
    # stop when you reach end of table => class# = accuracy
    if k == "accuracy":
        break
    else:
        # get class name and f1 score for class #
        class_f1_scores[class_names[int(k)]] = v["f1-score"]

# write it into a dataframe
f1_scores = pd.DataFrame({"classname": list(class_f1_scores.keys()),
                         "f1-score": list(class_f1_scores.values())}).sort_values("f1-score", ascending=False)

print(f1_scores)
classname f1-score
33 edamame 0.972112
88 seaweed_salad 0.898129
69 oysters 0.895582
63 macarons 0.892308
65 mussels 0.883333
.. ... ...
22 chocolate_mousse 0.383912
39 foie_gras 0.377649
15 ceviche 0.364066
93 steak 0.333333
77 pork_chop 0.316547

[101 rows x 2 columns]

f1_scores_inverse = f1_scores.sort_values(by=['f1-score'])
f1_bar_chart = f1_scores_inverse.plot.barh(x='classname',
                                  y='f1-score', fontsize=16,
                                  title="F1 Scores vs Class Names",
                                  rot=0, legend=True,
                                  figsize=(12,36))

Keras Applications & Tensorflow Datasets

Find Wrong Predictions with Highest Confidence

# making predictions on all 25250 validation images for 101 classes
test_prediction_probabilities = model_v2_b0.predict(testing_dataset, verbose=1)
print(test_prediction_probabilities.shape)
# (25250, 101)
# find false prediction that have the highest confidence
prediction_quality = pd.DataFrame({"y_true": correct_labels,
                                  "y_pred": predicted_labels,
                                  "pred_conf": test_prediction_probabilities.max(axis=1),
                                  "y_true_classname": [class_names[i] for i in correct_labels],
                                  "y_pred_classname": [class_names[i] for i in predicted_labels]})

prediction_quality
y_true y_pred pred_conf y_true_classname y_pred_classname
0 78 8 0.679352 poutine bread_pudding
1 100 100 0.849204 waffles waffles
2 79 79 0.866372 prime_rib prime_rib
3 4 4 0.803154 beef_tartare beef_tartare
4 37 42 0.990849 filet_mignon french_toast
... ... ... ... ... ...
25245 53 53 0.700280 hamburger hamburger
25246 13 13 0.944595 caprese_salad caprese_salad
25247 53 53 0.362593 hamburger hamburger
25248 11 11 0.998997 caesar_salad caesar_salad
25249 87 87 0.985820 scallops scallops

25250 rows × 5 columns

# add bool comlumn for correct predictions
prediction_quality["pred_correct"] = prediction_quality["y_true"] == prediction_quality["y_pred"]
# create new dataframe with the 100 most wrong predictions
top_100_wrong = prediction_quality[prediction_quality["pred_correct"] == False].sort_values("pred_conf", ascending=False)[:100]
top_100_wrong
y_true y_pred pred_conf y_true_classname y_pred_classname pred_correct
21045 66 67 1.000000 nachos omelette False
610 7 41 1.000000 bibimbap french_onion_soup False
15468 68 96 1.000000 onion_rings tacos False
24295 35 86 1.000000 escargots sashimi False
20157 42 50 1.000000 french_toast grilled_salmon False
... ... ... ... ... ... ...
12150 89 0 0.999972 shrimp_and_grits apple_pie False
15385 95 61 0.999972 sushi lobster_roll_sandwich False
10664 71 67 0.999972 paella omelette False
23552 89 18 0.999969 shrimp_and_grits chicken_curry False
8587 85 0 0.999969 samosa apple_pie False
# what predictions are most often wrong
grouped_top_100_wrong_pred = top_100_wrong.groupby(['y_pred', 'y_pred_classname']).agg(', '.join).reset_index()
pd.set_option('display.max_colwidth', None)
grouped_top_100_wrong_pred[:50]
y_pred y_pred_classname y_true_classname
0 0 apple_pie pancakes, miso_soup, risotto, grilled_cheese_sandwich, shrimp_and_grits, samosa
1 1 baby_back_ribs steak
2 3 beef_carpaccio beef_tartare, caesar_salad
3 5 beet_salad beef_carpaccio, deviled_eggs
4 6 beignets ravioli
5 8 bread_pudding pork_chop, strawberry_shortcake, strawberry_shortcake, beet_salad
6 9 breakfast_burrito huevos_rancheros, lasagna, chicken_quesadilla, omelette
7 10 bruschetta tuna_tartare, huevos_rancheros
8 12 cannoli tuna_tartare, carrot_cake
9 15 ceviche beet_salad
10 17 cheese_plate sashimi, grilled_cheese_sandwich
11 18 chicken_curry ravioli, shrimp_and_grits
12 20 chicken_wings french_fries, peking_duck
13 21 chocolate_cake chocolate_mousse, chocolate_mousse, grilled_salmon
14 22 chocolate_mousse apple_pie
15 26 crab_cakes foie_gras
16 27 creme_brulee pancakes
17 37 filet_mignon steak, tuna_tartare, chocolate_cake, prime_rib
18 38 fish_and_chips pulled_pork_sandwich
19 39 foie_gras apple_pie, shrimp_and_grits
20 41 french_onion_soup bibimbap
21 42 french_toast cheesecake, huevos_rancheros, churros, waffles
22 45 frozen_yogurt baklava
23 46 garlic_bread dumplings
24 47 gnocchi ravioli
25 48 greek_salad caesar_salad
26 49 grilled_cheese_sandwich chicken_quesadilla, hummus, bruschetta, garlic_bread
27 50 grilled_salmon french_toast, crab_cakes
28 52 gyoza chicken_quesadilla, grilled_cheese_sandwich
29 53 hamburger club_sandwich, onion_rings
30 55 hot_dog tacos
31 56 huevos_rancheros omelette
32 58 ice_cream macaroni_and_cheese, frozen_yogurt
33 60 lobster_bisque peking_duck
34 61 lobster_roll_sandwich sushi
35 64 miso_soup french_onion_soup
36 67 omelette nachos, caesar_salad, paella
37 74 peking_duck frozen_yogurt, oysters
38 77 pork_chop chicken_wings
39 79 prime_rib baby_back_ribs, steak
40 81 ramen pho
41 82 ravioli gnocchi, gnocchi
42 83 red_velvet_cake strawberry_shortcake, panna_cotta
43 84 risotto ravioli
44 85 samosa tuna_tartare, breakfast_burrito
45 86 sashimi escargots, strawberry_shortcake, hummus
46 91 spaghetti_carbonara spaghetti_bolognese
47 92 spring_rolls fish_and_chips, huevos_rancheros
48 93 steak baby_back_ribs, bread_pudding, foie_gras
49 96 tacos onion_rings
50 97 takoyaki spaghetti_bolognese
51 98 tiramisu cannoli, chocolate_mousse
52 100 waffles nachos
# what classes cause the most wrong predictions
grouped_top_100_wrong_cause = top_100_wrong.groupby(['y_true', 'y_true_classname']).agg(', '.join).reset_index()
grouped_top_100_wrong_cause[:50]
y_true y_true_classname y_pred_classname
0 0 apple_pie foie_gras, chocolate_mousse
1 1 baby_back_ribs prime_rib, steak
2 2 baklava frozen_yogurt
3 3 beef_carpaccio beet_salad
4 4 beef_tartare beef_carpaccio
5 5 beet_salad ceviche, bread_pudding
6 7 bibimbap french_onion_soup
7 8 bread_pudding steak
8 9 breakfast_burrito samosa
9 10 bruschetta grilled_cheese_sandwich
10 11 caesar_salad omelette, greek_salad, beef_carpaccio
11 12 cannoli tiramisu
12 14 carrot_cake cannoli
13 16 cheesecake french_toast
14 19 chicken_quesadilla grilled_cheese_sandwich, breakfast_burrito, gyoza
15 20 chicken_wings pork_chop
16 21 chocolate_cake filet_mignon
17 22 chocolate_mousse chocolate_cake, chocolate_cake, tiramisu
18 23 churros french_toast
19 25 club_sandwich hamburger
20 26 crab_cakes grilled_salmon
21 30 deviled_eggs beet_salad
22 32 dumplings garlic_bread
23 35 escargots sashimi
24 38 fish_and_chips spring_rolls
25 39 foie_gras crab_cakes, steak
26 40 french_fries chicken_wings
27 41 french_onion_soup miso_soup
28 42 french_toast grilled_salmon
29 45 frozen_yogurt peking_duck, ice_cream
30 46 garlic_bread grilled_cheese_sandwich
31 47 gnocchi ravioli, ravioli
32 49 grilled_cheese_sandwich cheese_plate, apple_pie, gyoza
33 50 grilled_salmon chocolate_cake
34 56 huevos_rancheros bruschetta, french_toast, breakfast_burrito, spring_rolls
35 57 hummus grilled_cheese_sandwich, sashimi
36 59 lasagna breakfast_burrito
37 62 macaroni_and_cheese ice_cream
38 64 miso_soup apple_pie
39 66 nachos omelette, waffles
40 67 omelette huevos_rancheros, breakfast_burrito
41 68 onion_rings tacos, hamburger
42 69 oysters peking_duck
43 71 paella omelette
44 72 pancakes apple_pie, creme_brulee
45 73 panna_cotta red_velvet_cake
46 74 peking_duck lobster_bisque, chicken_wings
47 75 pho ramen
48 77 pork_chop bread_pudding
49 79 prime_rib filet_mignon

Run Custom Predictions

# get list of custom image file paths
custom_images_path = "../datasets/custom_images/"
custom_images = [ custom_images_path + img_path for img_path in os.listdir(custom_images_path)]
custom_images

# ['../datasets/custom_images/cheesecake.jpg',
#  '../datasets/custom_images/crema_catalana.jpg',
#  '../datasets/custom_images/fish_and_chips.jpg',
#  '../datasets/custom_images/jiaozi.jpg',
#  '../datasets/custom_images/paella.jpg',
#  '../datasets/custom_images/pho.jpg',
#  '../datasets/custom_images/quesadilla.jpg',
#  '../datasets/custom_images/ravioli.jpg',
#  '../datasets/custom_images/waffles.jpg']
# run prediction on custom images
for image in custom_images:
    image = load_and_preprocess_image(image, normalize=False)
    # test image is (224, 224, 3) but model expects batch shape (None, 224, 224, 3)
    image_expanded = tf.expand_dims(image, axis=0)
    # get probabilities over all classes
    prediction_probabilities = model_v2_b0.predict(image_expanded)
    # get classname for highest probability
    predicted_class =  class_names[prediction_probabilities.argmax()]
    # plot normalized image
    plt.figure()
    plt.imshow(image/255.)
    plt.title(f"Pred: {predicted_class} ({prediction_probabilities.max()*100:.2f} %)")
    plt.axis(False)

Keras Applications & Tensorflow Datasets

About

Using Keras models and datasets to build custom prediction models

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published