Skip to content

horrible-dong/QTClassification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

QTClassification

A lightweight and extensible toolbox for image classification

version โ€ƒdocs โ€ƒlicense

Author: QIU Tian
Affiliation: Zhejiang University
๐Ÿ› ๏ธ Installation | ๐Ÿ“˜ Documentation | ๐ŸŒฑ Dataset Zoo | ๐Ÿ‘€ Model Zoo
English | ็ฎ€ไฝ“ไธญๆ–‡

NOTICE

This is the last version of 0.x.x. In the forthcoming version 1.0.0, we will include a range of model architectures specifically for training the CIFAR datasets. Additionally, we will also provide more advanced examples on how to manage configs methodically and efficiently.

Installation

The development environment of this project is python 3.7 & pytorch 1.11.0+cu113.

  1. Create your conda environment.
conda create -n qtcls python==3.7 -y
  1. Enter your conda environment.
conda activate qtcls
  1. Install PyTorch.
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113

Or you can refer to PyTorch to install newer or older versions. Please note that if pytorch โ‰ฅ 1.13, then python โ‰ฅ 3.8 is required.

  1. Install necessary dependencies.
pip install -r requirements.txt

Getting Started

For a quick experience, you can directly run the following commands:

Training

# single-gpu
CUDA_VISIBLE_DEVICES=0 \
python main.py \
  --data_root ./data \
  --dataset cifar10 \
  --model resnet50 \
  --batch_size 256 \
  --lr 1e-4 \
  --epochs 12 \
  --output_dir ./runs/__tmp__
  
# multi-gpu (needs pytorch>=1.9.0)
OMP_NUM_THREADS=1 CUDA_VISIBLE_DEVICES=0,1 \
torchrun --nproc_per_node=2 main.py \
  --data_root ./data \
  --dataset cifar10 \
  --model resnet50 \
  --batch_size 256 \
  --lr 1e-4 \
  --epochs 12 \
  --output_dir ./runs/__tmp__
  
# multi-gpu (for any pytorch version, but with a "deprecated" warning)
OMP_NUM_THREADS=1 CUDA_VISIBLE_DEVICES=0,1 \
python -m torch.distributed.launch --nproc_per_node=2 --use_env main.py \
  --data_root ./data \
  --dataset cifar10 \
  --model resnet50 \
  --batch_size 256 \
  --lr 1e-4 \
  --epochs 12 \
  --output_dir ./runs/__tmp__

The cifar10 dataset and resnet50 pretrained weights will be automatically downloaded. Please keep the network accessible. The cifar10 dataset will be downloaded to ./data. The resnet50 pretrained weights will be downloaded to ~/.cache/torch/hub/checkpoints.

During training, the config file, checkpoints, logs, and other outputs will be stored in ./runs/__tmp__.

Evaluation

# single-gpu
CUDA_VISIBLE_DEVICES=0 \
python main.py \
  --data_root ./data \
  --dataset cifar10 \
  --model resnet50 \
  --batch_size 256 \
  --resume ./runs/__tmp__/checkpoint.pth \
  --eval
  
# multi-gpu (needs pytorch>=1.9.0)
OMP_NUM_THREADS=1 CUDA_VISIBLE_DEVICES=0,1 \
torchrun --nproc_per_node=2 main.py \
  --data_root ./data \
  --dataset cifar10 \
  --model resnet50 \
  --batch_size 256 \
  --resume ./runs/__tmp__/checkpoint.pth \
  --eval
  
# multi-gpu (for any pytorch version, but with a "deprecated" warning)
OMP_NUM_THREADS=1 CUDA_VISIBLE_DEVICES=0,1 \
python -m torch.distributed.launch --nproc_per_node=2 --use_env main.py \
  --data_root ./data \
  --dataset cifar10 \
  --model resnet50 \
  --batch_size 256 \
  --resume ./runs/__tmp__/checkpoint.pth \
  --eval

How to use

When using the toolbox for training and evaluation, you may run the commands we provided above with your own arguments.

Frequently-used command-line arguments

Command-Line Argument Description Default Value
--data_root Directory where your datasets are stored. ./data
--dataset
-d
Dataset name defined in qtcls/datasets/__init__.py, such as cifar10 and imagenet1k. /
--model_lib Model library where models come from. The toolbox's basic (default) model library is extended from torchvision and timm, and the toolbox also supports the original timm. default
--model
-m
Model name defined in qtcls/models/__init__.py, such as resnet50 and vit_b_16. Currently supported model names are listed in Model Zoo. /
--criterion Criterion name defined in qtcls/criterions/__init__.py, such as ce. default
--optimizer Optimizer name defined in qtcls/optimizers/__init__.py, such as sgd and adam. adamw
--scheduler Scheduler name defined in qtcls/schedulers/__init__.py, such as cosine. cosine
--evaluator Evaluator name defined in qtcls/evaluators/__init__.py. The default evaluator computes the accuracy, recall, precision, and f1_score. default
--pretrain
-p
Path to the pre-trained weights, which is of the higher priority than the path stored in qtcls/models/_pretrain_.py. For long-term use of a pretrained weight path, it is preferable to write it in qtcls/models/_pretrain_.py. /
--no_pretrain Forcibly not use the pre-trained weights. False
--resume
-r
Checkpoint path to resume from. /
--output_dir
-o
Path to save checkpoints, logs, and other outputs. ./runs/__tmp__
--save_interval Interval for saving checkpoints. 1
--batch_size
-b
/ 8
--epochs / 300
--lr Learning rate. 1e-4
--amp Enable automatic mixed precision training. False
--eval Evaluate only. False
--note Note. The note content prints after each epoch, in case you forget what you are running. /

Using the config file (Recommended)

Or you can write the arguments into a config file (.py) and directly use --config / -c to import it.

--config / -c: Config file path. See configs. Arguments in the config file merge or override command-line arguments args.

For example,

python main.py --config configs/_demo_.py

or

python main.py -c configs/_demo_.py

For more details, please see "How to write and import your configs".

Dataset placement

Currently, mnist, fashion_mnist, cifar10, cifar100, stl10, svhn, pets, flowers, cars and food datasets will be automatically downloaded to the --data_root directory. For other datasets, please refer to "How to put your dataset".

How to customize

The toolbox is flexible enough to be extended. Please follow the instructions below:

How to register your datasets

How to register your models

How to register your criterions

How to register your optimizers

How to register your schedulers

How to register your evaluators

How to write and import your configs

Dataset Zoo

Currently supported argument --dataset / -d:
mnist, fashion_mnist, cifar10, cifar100, stl10, svhn, pets, flowers, cars, food, imagenet1k, imagenet21k (also called imagenet22k), and all datasets in folder format (consistent with imagenet storage format, see "How to put your dataset - About folder format datasets" for details).

Model Zoo

The toolbox's basic (default) model library is extended from torchvision and timm, and the toolbox also supports the original timm.

default

Set the argument --model_lib to default.

Currently supported argument --model / -m:

AlexNet
alexnet

CaiT
cait_xxs24_224, cait_xxs24_384, cait_xxs36_224, cait_xxs36_384, cait_xs24_384, cait_s24_224, cait_s24_384, cait_s36_384, cait_m36_384, cait_m48_448

ConvNeXt
convnext_tiny, convnext_small, convnext_base, convnext_large

DeiT
deit_tiny_patch16_224, deit_small_patch16_224, deit_base_patch16_224, deit_base_patch16_384, deit_tiny_distilled_patch16_224, deit_small_distilled_patch16_224, deit_base_distilled_patch16_224, deit_base_distilled_patch16_384, deit3_small_patch16_224, deit3_small_patch16_384, deit3_medium_patch16_224, deit3_base_patch16_224, deit3_base_patch16_384, deit3_large_patch16_224, deit3_large_patch16_384, deit3_huge_patch14_224, deit3_small_patch16_224_in21ft1k, deit3_small_patch16_384_in21ft1k, deit3_medium_patch16_224_in21ft1k, deit3_base_patch16_224_in21ft1k, deit3_base_patch16_384_in21ft1k, deit3_large_patch16_224_in21ft1k, deit3_large_patch16_384_in21ft1k, deit3_huge_patch14_224_in21ft1k

DenseNet
densenet121, densenet169, densenet201, densenet161

EfficientNet
efficientnet_b0, efficientnet_b1, efficientnet_b2, efficientnet_b3, efficientnet_b4, efficientnet_b5, efficientnet_b6, efficientnet_b7

GoogLeNet
googlenet

Inception
inception_v3

LeViT
levit_128s, levit_128, levit_192, levit_256, levit_256d, levit_384

MLP-Mixer
mixer_s32_224, mixer_s16_224, mixer_b32_224, mixer_b16_224, mixer_b16_224_in21k, mixer_l32_224, mixer_l16_224, mixer_l16_224_in21k, mixer_b16_224_miil_in21k, mixer_b16_224_miil, gmixer_12_224, gmixer_24_224, resmlp_12_224, resmlp_24_224, resmlp_36_224, resmlp_big_24_224, resmlp_12_distilled_224, resmlp_24_distilled_224, resmlp_36_distilled_224, resmlp_big_24_distilled_224, resmlp_big_24_224_in22ft1k, resmlp_12_224_dino, resmlp_24_224_dino, gmlp_ti16_224, gmlp_s16_224, gmlp_b16_224

MNASNet
mnasnet0_5, mnasnet0_75, mnasnet1_0, mnasnet1_3

MobileNet
mobilenet_v2, mobilenetv3, mobilenet_v3_large, mobilenet_v3_small

PoolFormer
poolformer_s12, poolformer_s24, poolformer_s36, poolformer_m36, poolformer_m48

PVT
pvt_tiny, pvt_small, pvt_medium, pvt_large, pvt_huge_v2

RegNet
regnet_y_400mf, regnet_y_800mf, regnet_y_1_6gf, regnet_y_3_2gf, regnet_y_8gf, regnet_y_16gf, regnet_y_32gf, regnet_y_128gf, regnet_x_400mf, regnet_x_800mf, regnet_x_1_6gf, regnet_x_3_2gf, regnet_x_8gf, regnet_x_16gf, regnet_x_32gf

ResNet
resnet18, resnet34, resnet50, resnet101, resnet152, resnext50_32x4d, resnext101_32x8d, wide_resnet50_2, wide_resnet101_2

ShuffleNetV2
shufflenet_v2_x0_5, shufflenet_v2_x1_0, shufflenet_v2_x1_5, shufflenet_v2_x2_0

SqueezeNet
squeezenet1_0, squeezenet1_1

Swin Transformer
swin_tiny_patch4_window7_224, swin_small_patch4_window7_224, swin_base_patch4_window7_224, swin_base_patch4_window12_384, swin_large_patch4_window7_224, swin_large_patch4_window12_384, swin_base_patch4_window7_224_in22k, swin_base_patch4_window12_384_in22k, swin_large_patch4_window7_224_in22k, swin_large_patch4_window12_384_in22k

Swin Transformer V2
swinv2_tiny_window8_256, swinv2_tiny_window16_256, swinv2_small_window8_256, swinv2_small_window16_256, swinv2_base_window8_256, swinv2_base_window16_256, swinv2_base_window12_192_22k, swinv2_base_window12to16_192to256_22kft1k, swinv2_base_window12to24_192to384_22kft1k, swinv2_large_window12_192_22k, swinv2_large_window12to16_192to256_22kft1k, swinv2_large_window12to24_192to384_22kft1k

TNT
tnt_s_patch16_224, tnt_b_patch16_224

Twins
twins_pcpvt_small, twins_pcpvt_base, twins_pcpvt_large, twins_svt_small, twins_svt_base, twins_svt_large

VGG
vgg11, vgg11_bn, vgg13, vgg13_bn, vgg16, vgg16_bn, vgg19, vgg19_bn

Vision Transformer (timm)
vit_tiny_patch4_32, vit_tiny_patch16_224, vit_tiny_patch16_384, vit_small_patch32_224, vit_small_patch32_384, vit_small_patch16_224, vit_small_patch16_384, vit_small_patch8_224, vit_base_patch32_224, vit_base_patch32_384, vit_base_patch16_224, vit_base_patch16_384, vit_base_patch8_224, vit_large_patch32_224, vit_large_patch32_384, vit_large_patch16_224, vit_large_patch16_384, vit_large_patch14_224, vit_huge_patch14_224, vit_giant_patch14_224

Vision Transformer (torchvision)
vit_b_16, vit_b_32, vit_l_16, vit_l_32

timm

Set the argument --model_lib to timm.

Currently supported argument --model / -m:
All supported. Please refer to timm for specific model names.

License

QTClassification is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Copyright (c) QIU Tian. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Citation

If you find QTClassification Toolbox useful in your research, please consider citing:

@misc{qtcls,
    title={QTClassification},
    author={Qiu, Tian},
    howpublished={\url{https://github.com/horrible-dong/QTClassification}},
    year={2023}
}