Skip to content

Commit

Permalink
Add paper
Browse files Browse the repository at this point in the history
PiperOrigin-RevId: 429168484
  • Loading branch information
romanngg committed Feb 17, 2022
1 parent 9d1d17e commit 7c77a22
Show file tree
Hide file tree
Showing 5 changed files with 72 additions and 71 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/tests.yml
Expand Up @@ -56,7 +56,7 @@ jobs:
pytest -n auto --cov=neural_tangents --cov-report=xml --cov-report=term
- name: Test with pytest and generate coverage report (macOS)
if: ${{ (matrix.os == 'macos-latest') && (matrix.JAX_ENABLE_X64 == 0) }}
if: ${{ (matrix.os != 'macos-latest') && (matrix.JAX_ENABLE_X64 == 0) }}
run: |
pytest -n auto --cov=neural_tangents --cov-report=xml --cov-report=term
Expand Down
File renamed without changes.
File renamed without changes.
141 changes: 71 additions & 70 deletions README.md
Expand Up @@ -429,76 +429,77 @@ as an example. With `NVIDIA V100` 64-bit precision, `nt` took 316/330/508 GPU-ho

Neural Tangents has been used in the following papers (newest first):

1. [Learning Representation from Neural Fisher Kernel with Low-rank Approximation](https://arxiv.org/abs/2202.01944)
2. [MIT 6.S088 Modern Machine Learning: Simple Methods that Work](https://web.mit.edu/modernml/course/)
3. [A Neural Tangent Kernel Perspective on Function-Space Regularization in Neural Networks](https://hudsonchen.github.io/papers/A_Neural_Tangent_Kernel_Perspective_on_Function_Space_Regularization_in_Neural_Networks.pdf)
4. [Eigenspace Restructuring: a Principle of Space and Frequency in Neural Networks](https://arxiv.org/abs/2112.05611)
5. [Functional Regularization for Reinforcement Learning via Learned Fourier Features](https://arxiv.org/abs/2112.03257)
6. [A Structured Dictionary Perspective on Implicit Neural Representations](https://arxiv.org/abs/2112.01917)
7. [Critical initialization of wide and deep neural networks through partial Jacobians: general theory and applications to LayerNorm](https://arxiv.org/abs/2111.12143)
8. [Asymptotics of representation learning in finite Bayesian neural networks](https://arxiv.org/abs/2106.00651)
9. [On the Equivalence between Neural Network and Support Vector Machine](https://arxiv.org/abs/2111.06063)
10. [An Empirical Study of Neural Kernel Bandits](https://arxiv.org/abs/2111.03543)
11. [Neural Networks as Kernel Learners: The Silent Alignment Effect](https://arxiv.org/abs/2111.00034)
12. [Understanding Deep Learning via Analyzing Dynamics of Gradient Descent](https://dataspace.princeton.edu/handle/88435/dsp01xp68kk34b)
13. [Neural Scene Representations for View Synthesis](https://digitalassets.lib.berkeley.edu/techreports/ucb/incoming/EECS-2020-223.pdf)
14. [Neural Tangent Kernel Eigenvalues Accurately Predict Generalization](https://arxiv.org/abs/2110.03922)
15. [Uniform Generalization Bounds for Overparameterized Neural Networks](https://arxiv.org/abs/2109.06099)
16. [Data Summarization via Bilevel Optimization](https://arxiv.org/abs/2109.12534)
17. [Neural Tangent Generalization Attacks](http://proceedings.mlr.press/v139/yuan21b.html)
18. [Dataset Distillation with Infinitely Wide Convolutional Networks](https://arxiv.org/abs/2107.13034)
19. [Neural Contextual Bandits without Regret](https://arxiv.org/abs/2107.03144)
20. [Epistemic Neural Networks](https://arxiv.org/abs/2107.08924)
21. [Uncertainty-aware Cardinality Estimation by Neural Network Gaussian Process](https://arxiv.org/abs/2107.08706)
22. [Scale Mixtures of Neural Network Gaussian Processes](https://arxiv.org/abs/2107.01408)
23. [Provably efficient machine learning for quantum many-body problems](https://arxiv.org/abs/2106.12627)
24. [Wide Mean-Field Variational Bayesian Neural Networks Ignore the Data](https://arxiv.org/abs/2106.07052)
25. [Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks](https://www.nature.com/articles/s41467-021-23103-1)
26. [Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation](https://arxiv.org/abs/2106.09017)
27. [Wide Mean-Field Variational Bayesian Neural Networks Ignore the Data](https://arxiv.org/abs/2106.07052)
28. [What can linearized neural networks actually say about generalization?](https://arxiv.org/abs/2106.06770)
29. [Measuring the sensitivity of Gaussian processes to kernel choice](https://arxiv.org/abs/2106.06510)
30. [A Neural Tangent Kernel Perspective of GANs](https://arxiv.org/abs/2106.05566)
31. [On the Power of Shallow Learning](https://arxiv.org/abs/2106.03186)
32. [Learning Curves for SGD on Structured Features](https://arxiv.org/abs/2106.02713)
33. [Out-of-Distribution Generalization in Kernel Regression](https://arxiv.org/abs/2106.02261)
34. [Rapid Feature Evolution Accelerates Learning in Neural Networks](https://arxiv.org/abs/2105.14301)
35. [Scalable and Flexible Deep Bayesian Optimization with Auxiliary Information for Scientific Problems](https://arxiv.org/abs/2104.11667)
36. [Random Features for the Neural Tangent Kernel](https://arxiv.org/abs/2104.01351)
37. [Multi-Level Fine-Tuning: Closing Generalization Gaps in Approximation of Solution Maps under a Limited Budget for Training Data](https://arxiv.org/abs/2102.07169)
38. [Explaining Neural Scaling Laws](https://arxiv.org/abs/2102.06701)
39. [Correlated Weights in Infinite Limits of Deep Convolutional Neural Networks](https://arxiv.org/abs/2101.04097)
40. [Dataset Meta-Learning from Kernel Ridge-Regression](https://arxiv.org/abs/2011.00050)
41. [Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel](https://arxiv.org/abs/2010.15110)
42. [Stable ResNet](https://arxiv.org/abs/2010.12859)
43. [Label-Aware Neural Tangent Kernel: Toward Better Generalization and Local Elasticity](https://arxiv.org/abs/2010.11775)
44. [Semi-supervised Batch Active Learning via Bilevel Optimization](https://arxiv.org/abs/2010.09654)
45. [Temperature check: theory and practice for training models with softmax-cross-entropy losses](https://arxiv.org/abs/2010.07344)
46. [Experimental Design for Overparameterized Learning with Application to Single Shot Deep Active Learning](https://arxiv.org/abs/2009.12820)
47. [How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks](https://arxiv.org/abs/2009.11848)
48. [Exploring the Uncertainty Properties of Neural Networks’ Implicit Priors in the Infinite-Width Limit](http://www.gatsby.ucl.ac.uk/~balaji/udl2020/accepted-papers/UDL2020-paper-115.pdf)
49. [Cold Posteriors and Aleatoric Uncertainty](https://arxiv.org/abs/2008.00029)
50. [Asymptotics of Wide Convolutional Neural Networks](https://arxiv.org/abs/2008.08675)
51. [Finite Versus Infinite Neural Networks: an Empirical Study](https://arxiv.org/abs/2007.15801)
52. [Bayesian Deep Ensembles via the Neural Tangent Kernel](https://arxiv.org/abs/2007.05864)
53. [The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks](https://arxiv.org/abs/2006.14599)
54. [When Do Neural Networks Outperform Kernel Methods?](https://arxiv.org/abs/2006.13409)
55. [Statistical Mechanics of Generalization in Kernel Regression](https://arxiv.org/abs/2006.13198)
56. [Exact posterior distributions of wide Bayesian neural networks](https://arxiv.org/abs/2006.10541)
57. [Infinite attention: NNGP and NTK for deep attention networks](https://arxiv.org/abs/2006.10540)
58. [Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains](https://arxiv.org/abs/2006.10739)
59. [Finding trainable sparse networks through Neural Tangent Transfer](https://arxiv.org/abs/2006.08228)
60. [Coresets via Bilevel Optimization for Continual Learning and Streaming](https://arxiv.org/abs/2006.03875)
61. [On the Neural Tangent Kernel of Deep Networks with Orthogonal Initialization](https://arxiv.org/abs/2004.05867)
62. [The large learning rate phase of deep learning: the catapult mechanism](https://arxiv.org/abs/2003.02218)
63. [Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks](https://arxiv.org/abs/2002.02561)
64. [Taylorized Training: Towards Better Approximation of Neural Network Training at Finite Width](https://arxiv.org/abs/2002.04010)
65. [On the Infinite Width Limit of Neural Networks with a Standard Parameterization](https://arxiv.org/abs/2001.07301)
66. [Disentangling Trainability and Generalization in Deep Learning](https://arxiv.org/abs/1912.13053)
67. [Information in Infinite Ensembles of Infinitely-Wide Neural Networks](https://arxiv.org/abs/1911.09189)
68. [Training Dynamics of Deep Networks using Stochastic Gradient Descent via Neural Tangent Kernel](https://arxiv.org/abs/1905.13654)
69. [Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent](https://arxiv.org/abs/1902.06720)
70. [Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes](https://arxiv.org/abs/1810.05148)
1. [Finding Dynamics Preserving Adversarial Winning Tickets](https://arxiv.org/abs/2202.06488)
2. [Learning Representation from Neural Fisher Kernel with Low-rank Approximation](https://arxiv.org/abs/2202.01944)
3. [MIT 6.S088 Modern Machine Learning: Simple Methods that Work](https://web.mit.edu/modernml/course/)
4. [A Neural Tangent Kernel Perspective on Function-Space Regularization in Neural Networks](https://hudsonchen.github.io/papers/A_Neural_Tangent_Kernel_Perspective_on_Function_Space_Regularization_in_Neural_Networks.pdf)
5. [Eigenspace Restructuring: a Principle of Space and Frequency in Neural Networks](https://arxiv.org/abs/2112.05611)
6. [Functional Regularization for Reinforcement Learning via Learned Fourier Features](https://arxiv.org/abs/2112.03257)
7. [A Structured Dictionary Perspective on Implicit Neural Representations](https://arxiv.org/abs/2112.01917)
8. [Critical initialization of wide and deep neural networks through partial Jacobians: general theory and applications to LayerNorm](https://arxiv.org/abs/2111.12143)
9. [Asymptotics of representation learning in finite Bayesian neural networks](https://arxiv.org/abs/2106.00651)
10. [On the Equivalence between Neural Network and Support Vector Machine](https://arxiv.org/abs/2111.06063)
11. [An Empirical Study of Neural Kernel Bandits](https://arxiv.org/abs/2111.03543)
12. [Neural Networks as Kernel Learners: The Silent Alignment Effect](https://arxiv.org/abs/2111.00034)
13. [Understanding Deep Learning via Analyzing Dynamics of Gradient Descent](https://dataspace.princeton.edu/handle/88435/dsp01xp68kk34b)
14. [Neural Scene Representations for View Synthesis](https://digitalassets.lib.berkeley.edu/techreports/ucb/incoming/EECS-2020-223.pdf)
15. [Neural Tangent Kernel Eigenvalues Accurately Predict Generalization](https://arxiv.org/abs/2110.03922)
16. [Uniform Generalization Bounds for Overparameterized Neural Networks](https://arxiv.org/abs/2109.06099)
17. [Data Summarization via Bilevel Optimization](https://arxiv.org/abs/2109.12534)
18. [Neural Tangent Generalization Attacks](http://proceedings.mlr.press/v139/yuan21b.html)
19. [Dataset Distillation with Infinitely Wide Convolutional Networks](https://arxiv.org/abs/2107.13034)
20. [Neural Contextual Bandits without Regret](https://arxiv.org/abs/2107.03144)
21. [Epistemic Neural Networks](https://arxiv.org/abs/2107.08924)
22. [Uncertainty-aware Cardinality Estimation by Neural Network Gaussian Process](https://arxiv.org/abs/2107.08706)
23. [Scale Mixtures of Neural Network Gaussian Processes](https://arxiv.org/abs/2107.01408)
24. [Provably efficient machine learning for quantum many-body problems](https://arxiv.org/abs/2106.12627)
25. [Wide Mean-Field Variational Bayesian Neural Networks Ignore the Data](https://arxiv.org/abs/2106.07052)
26. [Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks](https://www.nature.com/articles/s41467-021-23103-1)
27. [Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation](https://arxiv.org/abs/2106.09017)
28. [Wide Mean-Field Variational Bayesian Neural Networks Ignore the Data](https://arxiv.org/abs/2106.07052)
29. [What can linearized neural networks actually say about generalization?](https://arxiv.org/abs/2106.06770)
30. [Measuring the sensitivity of Gaussian processes to kernel choice](https://arxiv.org/abs/2106.06510)
31. [A Neural Tangent Kernel Perspective of GANs](https://arxiv.org/abs/2106.05566)
32. [On the Power of Shallow Learning](https://arxiv.org/abs/2106.03186)
33. [Learning Curves for SGD on Structured Features](https://arxiv.org/abs/2106.02713)
34. [Out-of-Distribution Generalization in Kernel Regression](https://arxiv.org/abs/2106.02261)
35. [Rapid Feature Evolution Accelerates Learning in Neural Networks](https://arxiv.org/abs/2105.14301)
36. [Scalable and Flexible Deep Bayesian Optimization with Auxiliary Information for Scientific Problems](https://arxiv.org/abs/2104.11667)
37. [Random Features for the Neural Tangent Kernel](https://arxiv.org/abs/2104.01351)
38. [Multi-Level Fine-Tuning: Closing Generalization Gaps in Approximation of Solution Maps under a Limited Budget for Training Data](https://arxiv.org/abs/2102.07169)
39. [Explaining Neural Scaling Laws](https://arxiv.org/abs/2102.06701)
40. [Correlated Weights in Infinite Limits of Deep Convolutional Neural Networks](https://arxiv.org/abs/2101.04097)
41. [Dataset Meta-Learning from Kernel Ridge-Regression](https://arxiv.org/abs/2011.00050)
42. [Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel](https://arxiv.org/abs/2010.15110)
43. [Stable ResNet](https://arxiv.org/abs/2010.12859)
44. [Label-Aware Neural Tangent Kernel: Toward Better Generalization and Local Elasticity](https://arxiv.org/abs/2010.11775)
45. [Semi-supervised Batch Active Learning via Bilevel Optimization](https://arxiv.org/abs/2010.09654)
46. [Temperature check: theory and practice for training models with softmax-cross-entropy losses](https://arxiv.org/abs/2010.07344)
47. [Experimental Design for Overparameterized Learning with Application to Single Shot Deep Active Learning](https://arxiv.org/abs/2009.12820)
48. [How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks](https://arxiv.org/abs/2009.11848)
49. [Exploring the Uncertainty Properties of Neural Networks’ Implicit Priors in the Infinite-Width Limit](http://www.gatsby.ucl.ac.uk/~balaji/udl2020/accepted-papers/UDL2020-paper-115.pdf)
50. [Cold Posteriors and Aleatoric Uncertainty](https://arxiv.org/abs/2008.00029)
51. [Asymptotics of Wide Convolutional Neural Networks](https://arxiv.org/abs/2008.08675)
52. [Finite Versus Infinite Neural Networks: an Empirical Study](https://arxiv.org/abs/2007.15801)
53. [Bayesian Deep Ensembles via the Neural Tangent Kernel](https://arxiv.org/abs/2007.05864)
54. [The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks](https://arxiv.org/abs/2006.14599)
55. [When Do Neural Networks Outperform Kernel Methods?](https://arxiv.org/abs/2006.13409)
56. [Statistical Mechanics of Generalization in Kernel Regression](https://arxiv.org/abs/2006.13198)
57. [Exact posterior distributions of wide Bayesian neural networks](https://arxiv.org/abs/2006.10541)
58. [Infinite attention: NNGP and NTK for deep attention networks](https://arxiv.org/abs/2006.10540)
59. [Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains](https://arxiv.org/abs/2006.10739)
60. [Finding trainable sparse networks through Neural Tangent Transfer](https://arxiv.org/abs/2006.08228)
61. [Coresets via Bilevel Optimization for Continual Learning and Streaming](https://arxiv.org/abs/2006.03875)
62. [On the Neural Tangent Kernel of Deep Networks with Orthogonal Initialization](https://arxiv.org/abs/2004.05867)
63. [The large learning rate phase of deep learning: the catapult mechanism](https://arxiv.org/abs/2003.02218)
64. [Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks](https://arxiv.org/abs/2002.02561)
65. [Taylorized Training: Towards Better Approximation of Neural Network Training at Finite Width](https://arxiv.org/abs/2002.04010)
66. [On the Infinite Width Limit of Neural Networks with a Standard Parameterization](https://arxiv.org/abs/2001.07301)
67. [Disentangling Trainability and Generalization in Deep Learning](https://arxiv.org/abs/1912.13053)
68. [Information in Infinite Ensembles of Infinitely-Wide Neural Networks](https://arxiv.org/abs/1911.09189)
69. [Training Dynamics of Deep Networks using Stochastic Gradient Descent via Neural Tangent Kernel](https://arxiv.org/abs/1905.13654)
70. [Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent](https://arxiv.org/abs/1902.06720)
71. [Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes](https://arxiv.org/abs/1810.05148)


Please let us know if you make use of the code in a publication, and we'll add it
Expand Down

0 comments on commit 7c77a22

Please sign in to comment.