Skip to content

This study compares popular Machine Learning (ML), Deep Learning (DP), and statistical algorithms for forecasting microservice time series.

Notifications You must be signed in to change notification settings

gfads/comparative-analysis-microservices-prediction

Repository files navigation

Comparative Analisys Microservices Prediction

Project description

This study compares popular Machine Learning (ML), Deep Learning (DP), and statistical algorithms for forecasting microservice time series. The evaluated algorithms are a statistical algorithm (AutoRegressive Integrated Moving Average (ARIMA)), five DL ones (Dual-Stage Attention-Based RNN (DARNN), Deep State Space Model (DeepState), DeepAR, Long Short-Term Memory (LSTM), and Temporal Fusion Transformer (TFT)), and four traditional ML (Multilayer Perceptron (MLP), Support Vector Regressor (SVR), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost)). They are evaluated in 40-time series extracted from microservices operating in production in a large-scale deployment within the Alibaba Cluster.

Installation

How to install the project?

$ virtualenv venv
$ source venv/bin/activate
$ pip3 install -r requirements.txt

Project Files

Summary of the main repository files.

Files Content description
Data-descriptions.csv Description of the datasets.
DTW Result of the DTW algorithm for selecting time series.
Friedman and Nemenyi tests Friedman and Nemenyi results
Result MSE and model efficiency time (MET) of the models.
Models Trained models saved in .pickle

How to regenerate results using pickle models?

File File description
generate_met_results.py Generates MET results from models.
generate_mse_results.py Generates MSE results from models.

Parameters models

The parameters adopted into models’ training is summarises below:

Algorithms with Source Hyperparameters
ARIMA AutoArima
DARNN 'enconder': (16, 32, 64, 128, 256), 'decoder': (16, 32, 64, 128, 256)
DeepAr 'encoder': (8), 'decoder': (8), 'batch': (64), 'learning_rate': (0.0001), 'layers': (3), 'lstm_nodes': (40)
DeepState The algorithm itself selects the hyperparameters
LSTM 'batch_size': (64, 128), 'epochs': (1, 2, 4, 8, 10), 'hidden_layers': (2, 3, 4, 5, 6), 'learning_rate': (0.05, 0.01, 0.001)
MLP 'hidden_layer_sizes': (2, 5, 10, 15, 20), 'activation': ('logistic'), 'solver': ('adam'), 'max_iter': (1000), 'num_exec': 10
RF 'min_samples_leaf': (1, 5, 10), 'min_samples_split': (2, 5, 10, 15), 'n_estimators': (100, 500, 1000)
TFT 'dropout_rate': (0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9), 'learning_rate': (0.0001, 0.001, 0.01), 'num_heads': (1, 4), 'batch': (64, 128, 256)
SVR 'gamma': (0.001, 0.01, 0.1, 1) 'kernel': ('rbf', 'sigmoid') 'epsilon': (0.1, 0.001, 0.0001) 'C': (0.1, 1, 10, 100, 1000, 10000)
XGBoost 'col_sample_by_tree': (0.4, 0.6, 0.8), 'gamma': (1, 5, 10), 'learning_rate': (0.01, 0.1, 1), 'max_depth': (3, 6, 10), 'n_estimators': (100, 150, 200), 'reg_alpha': (0.01, 0.1, 10), 'reg_lambda': (0.01, 0.1, 10), 'subsample': (0.4, 0.6, 0.8)

About

This study compares popular Machine Learning (ML), Deep Learning (DP), and statistical algorithms for forecasting microservice time series.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages