Skip to content

aumpierre-unb/InternalFluidFlow.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

InternalFluidFlow.jl

DOI License: MIT version

Installing and Loading InternalFluidFlow

InternalFluidFlow can be installed and loaded either from the JuliaHub repository (last released version) or from the maintainer's repository.

Last Released Version

The last version of InternalFluidFlow can be installed from JuliaHub repository:

using Pkg
Pkg.add("InternalFluidFlow")
using InternalFluidFlow

If InternalFluidFlow is already installed, it can be updated:

using Pkg
Pkg.update("InternalFluidFlow")
using InternalFluidFlow

Pre-Release (Under Construction) Version

The pre-release (under construction) version of InternalFluidFlow can be installed from the maintainer's repository.

using Pkg
Pkg.add(path="https://github.com/aumpierre-unb/InternalFluidFlow.jl")
using InternalFluidFlow

Citation of InternalFluidFlow

You can cite all versions (both released and pre-released), by using DOI 105281/zenodo.7019888. This DOI represents all versions, and will always resolve to the latest one.

The InternalFluidFlow Module for Julia

InternalFluidFlow provides the following functions:

  • Re2f
  • f2Re
  • h2fRe

Re2f

Re2f computes the Darcy friction f factor given the Reynolds number Re and the relative roughness eps (default eps = 0).

By default, pipe is assumed to be smooth. Relative roughness is reset to eps = 0.05, if eps > 0.05.

If parameter fig = true is given a schematic Moody diagram is plotted as a graphical representation of the solution.

Syntax:

Re2f(Re::Number, eps::Number=0, fig::Bool=false)

Examples:

Compute the Darcy friction factor f given the Reynolds number Re = 120,000 and the relative roughness eps = 0.001:

f = Re2f(120e3, eps=1e-3)

Compute the Darcy friction factor f given the Reynolds number Re = 120,000 for a smooth pipe and plot and show results on a schematic Moody diagram:

f = Re2f(120e3, fig=true)

f2Re

f2Re computes the Reynolds number Re given the Darcy friction factor f and the relative roughness eps (default eps = 0) for both laminar and turbulent regime, if possible.

By default, pipe is assumed to be smooth. Relative roughness is reset to eps = 0.05, if eps > 0.05.

If parameter fig = true is given a schematic Moody diagram is plotted as a graphical representation of the solution.

If parameter isturb = true is given and both laminar and turbulent regimes are possible, then f2Re returns the number of Reynolds for turbulent regime alone.

Syntax:

f2Re(f::Number, eps::Number=0, fig::Bool=false, isturb::Bool=false)

Examples:

Compute the Reynolds number Re given the Darcy friction factor f = 0.028 and the pipe's relative roughness eps = 0.001. In this case, both laminar and turbulent solutions are possible:

Re = f2Re(2.8e-2, eps=1e-3)

Compute the Reynolds number Re given the Darcy friction factor f = 0.028 for a smooth pipe and plot and show results on a schematic Moody diagram:

Re = f2Re(2.8e-2, fig=true)

h2fRe

h2fRe computes the Reynolds number Re and the Darcy friction factor f given the head loss h, the pipe's hydraulic diameter D or the flow speed v or the volumetric flow rate Q, the pipe's length L (default L = 100), the pipe's roughness k (default k = 0) or the pipe's relative roughness eps (default eps = 0), the fluid's density rho (default rho = 0.997), the fluid's dynamic viscosity mu (default mu = 0.0091), and the gravitational accelaration g (default g = 981).

By default, pipe is assumed to be 1 m long, L = 100 (in cm).

By default, pipe is assumed to be smooth. Relative roughness is reset to eps = 0.05, if eps > 0.05.

Notice that default values are given in the cgs unit system and, if taken, all other parameters must as well be given in cgs units.

If parameter fig = true is given a schematic Moody diagram is plotted as a graphical representation of the solution.

Syntax:

h2fRe(h::Number;
    L::Number=100,
    eps::Number=NaN, k::Number=NaN,
    D::Number=NaN, v::Number=NaN, Q::Number=NaN,
    rho::Number=0.997, mu::Number=0.0091,
    g::Number=981,
    fig::Bool=false)

Examples:

Compute the Reynolds number Re and the Darcy friction factor f given the head loss h = 40 cm, the pipe's hydraulic diameter D = 10 cm, length L = 25 m and relative roughness eps = 0.0027 for water flow:

Re, f = h2fRe(40, D=10, L=2.5e3, eps=2.7e-3)

Compute the Reynolds number Re and the Darcy friction factor f given the head loss per meter h/L = 1.6 cm/m, the volumetric flow rate Q = 8.6 L/s, the fluid's density rho = 0.989 g/cc and dynamic viscosity mu = 0.89 cP for a smooth pipe and show results on a schematic Moody diagram:

Re, f = h2fRe(1.6, Q=8.6e3, eps=0, rho=0.989, mu=8.9e-3, fig=true)

Compute the Reynolds number Re and the Darcy friction factor f, given the head loss h = 0.40 m, the flow speed v = 1.1 m/s, the pipe's length L = 25 m for water flow in a smooth pipe:

Re, f = h2fRe(40, v=1.1e2, L=2.5e3, k=0)

See Also

McCabeThiele.jl, Psychrometrics.jl, PonchonSavarit.jl.

Copyright © 2022 2023 Alexandre Umpierre

email: aumpierre@gmail.com