Skip to content

Andemanden/Computational-Solute-Transport-Across-Membranes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Solute Transport Computation On Membranes

Matlab Version Topic Uni. ECTS. LIC

A Membrane-based Process Modeling Simulation Using Emperical Numerical Methods


Show Creators Of Project:Project Creators:

Axelsen, D. A. L.,
Galsøe, P.,
Hansen, J. A.,
Mølgaard, J. S.,
Rehné, A. M.,
Zegarra, L. K.,

Table of contents

General info

A chemistry tool for modeling solute molecules transport through a membrane. It uses data from a Visual MINTEQ simulation of a solution where equilibrium has transpired.

Key incorporated theoretical aspects

  • Advections
    • Solute addvection
    • Percipitate addvection
  • Convection
  • Percipitate suspension
  • Indirect equilibrium Incorporation (From MINTEQ)
  • pH specification (From MINTEQ)
  • Osmotic pressure
  • Solute Accumulation
  • Fouling
  • Conservation of mass investigation

Mathematical methodology

The concept is an emperical numerical method based on the generalized advection-diffusion equation.

The movement equation of the emperical model is solved numerically as a finite difference explicit upwind scheme in accordance to the forward Euler method as:

$$c_{i,j}=c_{i,j-1}+ D \frac{(c_{i+1,j-1}-2c_{i,j-1}+c_{i-1,j-1})}{\Delta x^2}\Delta t - J_{tot,v} \frac{(c_{i,j-1}-c_{i-1,j-1})}{\Delta x} \Delta t$$

Bountary Conditions

The boundary conditions is defined as follows:

$$ c_{L_x,j}-c_{L_x,j-1}=D(\frac{c_{L_x+\Delta x,j-1}-c_{L_x,j-1}}{\Delta x^2}+\frac{c_{L_x,j-1}+c_{L_x-\Delta x,j-1}}{\Delta x^2})\Delta t - J_{tot,v}\frac{(c_{L_x,j-1}\cdot (1-\sigma_i)-+c_{L_x-\Delta x,j-1})}{\Delta x}\Delta t $$

Stability

Tip

Stability indicators for diffusion and advection are in the console and plot, respectively.

The diffusive and advective stabilities is defined in isolated enviorments by the following conditions:

$$D\frac{\Delta t}{\Delta x^2} \leq \frac{1}{2} ~~~ And ~~~ J_{tot,v}\frac{\Delta t}{\Delta x} <1$$ And $$J_{tot,v}\frac{\Delta t}{\Delta x} <1$$

While in a system where both of these stabilities are relevant a new term must be upheld:

$$1-J_{tot,v}\frac{\Delta t}{\Delta x} - 2D\frac{\Delta t}{\Delta x^2} \geq 0$$

Installation

OS X & Windows:

git clone https://github.com/Andemanden/Computational-Solute-Transport-Across-Membranes.git

Linux:

git clone https://github.com/Andemanden/Computational-Solute-Transport-Across-Membranes.git --depth 1 --branch=master ~/dir-name

Current MATLAB version:
MathWorks Page

Visual MINTEQ:
The MINTEQ Page

Simulation Results

Pictures to be added

Use cases

This code has already been used in this article: 1

Current progress

Progress: [======================] 100%

Footnotes

  1. Membrane-based Process Modeling of Phosphorus Recovery from the Danish Sewage Sludge Using Numerical Methods