Skip to content

nikh-iam/Pest-Classification-and-Detection-System-using-Deep-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pest Classification and Detection System using Deep Learning

Pests significantly affect agricultural yields, leading to declines in productivity and nutrient depletion. Excessive pesticide usage often results in increased pesticide residues, disrupting the food chain and causing adverse effects on human health and the environment. Our deep learning-based solution automates pest detection and classification to address these challenges.

Key Features

Automated Pest Detection - Advanced deep learning model for accurate pest identification
Efficient Processing - Rapid image analysis outperforming manual inspection
🎯 High Accuracy - State-of-the-art classification performance
🌐 Scalable Solution - Ready for large-scale agricultural deployment
🖥️ User-Friendly Interface - Accessible to non-technical users
📚 Comprehensive Pest Database - Detailed information including descriptions and treatment recommendations

System Screenshots

Prediction Interface

Prediction Page

Results Display

Result Page

Administrative Dashboard

Officer Dashboard

Technical Implementation

  • Deep Learning Model: Custom-trained CNN for pest classification
  • Backend: Python with Flask framework
  • Database: MongoDB for pest information storage
  • Frontend: Responsive web interface

Installation Guide

Prerequisites

  • Python 3.8+
  • MongoDB
  • pip package manager

Setup Instructions

  1. Download Required Files:

  2. Prepare Model Files:

    mkdir models
    mv pest_model.pth models/
  3. Database Setup:

    # Create MongoDB database and collection
    mongo
    > use pest
    > db.createCollection("pest_details")
    # Import JSON data (use the downloaded file)
  4. Install Dependencies:

    pip install -r requirements.txt
  5. Run the Application:

    python main.py
  6. Access the System: Open your browser and navigate to http://localhost:5000

System Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│                 │    │                 │    │                 │
│   Frontend UI   │ ←→ │  Flask Server   │ ←→ │     MongoDB     │
│                 │    │                 │    │                 │
└─────────────────┘    └─────────────────┘    └─────────────────┘
                               ↑
                               │
                      ┌─────────────────┐
                      │                 │
                      │  Deep Learning  │
                      │     Model       │
                      │                 │
                      └─────────────────┘

Contributing

We welcome contributions! Please fork the repository and submit pull requests for any enhancements.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contact

For questions or support, please contact on gmail

About

No description or website provided.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published