Skip to content

Latest commit

 

History

History
336 lines (219 loc) · 12 KB

File metadata and controls

336 lines (219 loc) · 12 KB
title author header-includes abstract
Abstract Algebra by Pinter, Chapter 25
Amir Taaki
- \usepackage{mathrsfs} - \usepackage{mathtools} - \usepackage{extpfeil} - \DeclareMathOperator\ker{ker} - \DeclareMathOperator\ord{ord} - \DeclareMathOperator\gcd{gcd} - \DeclareMathOperator\lcm{lcm} - \DeclareMathOperator\char{char} - \DeclareMathOperator\max{max} - \DeclareMathOperator\ran{ran} - \DeclareMathOperator\deg{deg} - \newcommand{\mod}[1]{\ (\mathrm{mod}\ #1)} - \newcommand{\repr}[1]{\overline{#1}} - \newcommand{\leg}[2]{\left(\frac{#1}{#2}\right)}
Chapter 25 on Factoring Polynomials

A. Examples of Factoring into Irreducible Factors

Q1

$\mathbb{Q}: x^4 - 4 = (x^2 - 2)(x^2 + 2)$

$\mathbb{R}: x^4 - 4 = (x - \sqrt{2})(x + \sqrt{2})(x^2 + 2)$

$\mathbb{C}: x^4 - 4 = (x - \sqrt{2})(x + \sqrt{2})(x - \sqrt{2}i)(x + \sqrt{2}i)$

Q2

Factor $x^6 - 16$

$\mathbb{Q}: (x^3 - 4)(x^3 + 4)$

$\mathbb{R}: (x^3 - (\sqrt[3]{4})^3)(x^3 + (\sqrt[3]{4})^3) = (x - \sqrt[3]{4})(x^2 + \sqrt[3]{4} x + (\sqrt[3]{4})^2) (x + \sqrt[3]{4})(x^2 - \sqrt[3]{4} x + (\sqrt[3]{4})^2)$

(using the sum and differences of cubes formulas: $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ and $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$.)

Using the quadratic formula to find the roots, for $\mathbb{C}$ and setting $b = \sqrt[3]{4}$ we get:

$$(x^6 - 16) = (x - b)(x^2 + b x + b^2) (x + b)(x^2 - b x + b^2)$$ $$a = 1, b = \sqrt[3]{4}, c = b^2 = (\sqrt[3]{4})^2$$ \begin{align*} x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \ &= \frac{-b \pm \sqrt{b^2 - 4b^2}}{2} \ &= \frac{-b \pm b \sqrt{-3}}{2} \ &= \frac{-b - b \sqrt{3}i}{2}, \frac{-b + b \sqrt{3}i}{2} \ \end{align*}

And so therefore the roots for $(x^2 + bx + b^2)$ are:

\begin{align*} (x^2 + bx + b^2) &= (x - [\frac{-b - b \sqrt{3}i}{2}])(x - [\frac{-b + b \sqrt{3}i}{2}]) \ (x^2 + \sqrt[3]{4}x + (\sqrt[3]{4})^2) &= (x - [\frac{-\sqrt[3]{4} - \sqrt[3]{4} \sqrt{3}i}{2}])(x - [\frac{-\sqrt[3]{4} + \sqrt[3]{4} \sqrt{3}i}{2}]) \ &= \left(x + \frac{\sqrt[3]{4}}{2} - \frac{\sqrt[3]{4}}{2} \sqrt{3}i\right)\left(x + \frac{\sqrt[3]{4}}{2} + \frac{\sqrt[3]{4}}{2} \sqrt{3}i\right) \ \end{align*} Likewise $$(x^2 - \sqrt[3]{4}x + (\sqrt[3]{4})^2) = \left(x - \frac{\sqrt[3]{4}}{2} - \frac{\sqrt[3]{4}}{2} \sqrt{3}i\right)\left(x - \frac{\sqrt[3]{4}}{2} + \frac{\sqrt[3]{4}}{2} \sqrt{3}i\right) $$ Thus $$(x^6 - 16) = (x - \sqrt[3]{4}) \left(x + \frac{\sqrt[3]{4}}{2} - \frac{\sqrt[3]{4}}{2} \sqrt{3}i\right)\left(x + \frac{\sqrt[3]{4}}{2} + \frac{\sqrt[3]{4}}{2} \sqrt{3}i\right) (x + \sqrt[3]{4}) \left(x - \frac{\sqrt[3]{4}}{2} - \frac{\sqrt[3]{4}}{2} \sqrt{3}i\right)\left(x - \frac{\sqrt[3]{4}}{2} + \frac{\sqrt[3]{4}}{2} \sqrt{3}i\right) $$

Q3

Note $f(x) = 0$ implies it has roots and so is reducible.

$$1, x, x^2 + x + 1, x^3 + x^2 + 1, x^3 + x + 1$$ $$x^4 + x^3 + 1, x^4 + x^2 + 1, x^4 + x + 1$$

Q4

$$x^2 + 2 = (x + a)(x + b)$$

Find $x$ given $x^2 + 2 = 0$. The only squares in $\mathbb{Z}_5$ are 1 and 4. Neither is valid for $x$ so $x^2 + 2$ is irreducible in $\mathbb{Z}_5$.

\begin{align*} x^4 - 4 &= (x^2 - 2)(x^2 + 2) \ &= (x^2 + 3)(x^2 + 2) \end{align*}

Q5

$$f(2) = 0, f(4) = 0$$ Roots are $2 + 3 = 0$ and $4 + 1 = 0$. Factoring we get $2(x + 3)(x + 1)^2$ (actually I just used a Berklecamp calculator).

Q6

$$(3x + 4)(4x + 3) = x$$ $$(2x + 1)(3x + 2) = x + 2$$ $$(4x + 3)(3x + 1) = x + 3$$

B. Short Questions Relating to Irreducible Polynomials

Q1

Polynomials of degree 1 in a field are irreducible. There are no zero divisors. Multiplying constant terms produces another constant term. Multiplying factors with degrees $m$ and $n$ respectively will produce a new factor with degree $m + n$, and since there are no zero divisors the product of two non-zero coefficients can never be zero.

Q2

If $a(x)$ and $b(x)$ have different degrees they cannot be associates since there are no zero divisors in a field and so no constant term can cancel factors in a polynomial.

Assume $a(x)$ and $b(x)$ have the same degree. Then their leading terms are both $x^n$. If there is some constant term $c > 1$ such that $a(x) = c \cdot b(x)$ then the leading term of $c \cdot b(x)$ will be $c x^n$ which is not the leading term in $a(x)$. Hence there is a contradiction and both polynomials are not associates.

Q3

$a(x)$ and $b(x)$ are distinct so $a(x) \neq b(x)$, and since $a(x)$ and $b(x)$ cannot be factored, then they share no factors and are relatively prime.

Q4

An associate of $a(x)$ is $b(x) = ka(x)$, and since $a(x)$ is irreducible, so is $b(x)$, hence all associates of $a(x)$ are irreducible if $a(x)$ is irreducible.

Q5

In a field, no constants multiplied can equal 0, so there is no $ka(x) = 0$.

Q6

$$|\mathbb{Z}_p| = \phi(p) = p - 1$$

There are $p - 1$ possible values for $k$ and hence $p - 1$ associates of non-zero $a(x)$.

Q7

Polynomial factors for $x^2 + 1$ are lower degree since it's reducible in $\mathbb{Z}_p$.

$a(x) = x^2 + 1 = kp_1(x)p_2(x)$ where $p_1(x)$ and $p_2(x)$ are monic irreducible polynomials.

$$x^2 + 1 = k(x + a)(x + b) \text{ in } \mathbb{Z}_p[x]$$ $$a + b \equiv 0 \mod p$$ $$ab \equiv 1 \mod p$$

Since $a, b \in \mathbb{Z}_p$, then $p = a + b$ (otherwise $a = ka_1, b = kb_1$ and $p = a_1 + b_1$)

C. Number of Irreducible Quadratics over a Finite Field

Q1

By theorem 4, each factorization is unique so $(x + a_1)(x + b_1) \neq (x + a_2)(x + b_2)$ for all $a_1, b_1, a_2, b_2 \in \mathbb{Z}_5$.

$(x + a)^2$, there are 5 possible values and $\binom{5}{2} = 10$, so there are 10 combinations for $(x + a)(x + b)$ (disregarding order since $\mathbb{Z}_5$ is commutative). There are 15 reducible monic quadratics in $\mathbb{Z}_5[x]$.

Q2

There are 15 reducible monics, and 0 is not an associate, 1 is unity, leaving $ka(x)$ different associates where $k \in { 2, 3, 4 }$ and $|k| = 5 - 2 = 3$.

Therefore the total number of reducible quadratics is $4 \times 15 = 60$.

The total number of quadradics in $\mathbb{Z}_5[x]$ is $5^3 = 125$ from all the possible combos of $ax^2 + bx + c$.

So there are $125 - 60$ irreducible quadratics.

Q3

$$n^3 - (n - 1)\left[\binom{n}{2} + n\right]$$

Q4

$$n^4 - (n - 1)\left[\binom{n}{3} + n\right]$$

D. Ideals in Domains of Polynomials

Q1

$$J = \langle b(x) \rangle = \langle a(x) \rangle$$

So it follows $\deg a(x) = \deg b(x)$ yet they are both in $J$ and so multiples of each other. So $a(x)$ and $b(x)$ are associates.

Q2

$a(x) = b(x)m(x) : b(x) \in F[x]$ and $J = \langle m(x) \rangle \implies a(x) \in J$

$a(x) \in J$ and $J = \langle m(x) \rangle \implies a(x) = b(x) m(x)$ for some $b(x) \in F[x]$

Q3

$$a(x)b(x) = kp_1(x)\cdots p_r(x)$$

$J = \langle m(x) \rangle$ where $m(x)$ is irreducible. Since $J$ is an ideal $a(x)b(x) \in J \implies a(x)b(x) = c(x)m(x)$ for some $c(x) \in F[x]$. But $m(x)$ is irreducible so $m(x) = p_i(x)$ where i is one of the factors from 1 to $r$.

Likewise if $J$ is a prime ideal then $a(x)b(x) \in J \implies a(x) \in J$ or $b(x) \in J$. Say $a(x) \in J$, then $a(x) = kp_1(x) \cdots p_r(x) \implies p_i(x) \in J$ for some $i \in {1, \dots, r } \implies J = \langle m(x) \rangle$ where $m(x)$ is irreducible.

Q4

$p(x)$ is irreducible. $$J = \langle p(x) \rangle$$ Let there be an ideal $K$ such that $J \subset K$, and let $a(x) \in K$ such that $a(x) \notin J$.

Thus $a(x)$ is not a multiple of $p(x)$ and they share no common factors.

$$1 = r(x)a(x) + s(x)p(x)$$ $$\implies r(x)a(x) = 1 - s(x)p(x)$$ $$\implies r(a)a(x) \in J + 1$$ So $a(x)$ is invertible and so $a(x) \in K \implies K = A$.

Q5

Coefficient sum of $x - 1$ is $1 + (-1) = 0$ so $x - 1 \in S$. $x - 1$ is irreducible so it is a maximal ideal and $S = \langle x - 1 \rangle$.

Q6

$$g(a(x)) = g(a_0 + \cdots + a_n x^n) = a_0 + \cdots + a_n$$ $$k(x) \in K = \ker g \implies g(k(x)) = 0$$ From previous question $k = \langle x - 1 \rangle$. $$ g : F[x] \underset{\langle x - 1 \rangle}{\relbar\joinrel\twoheadrightarrow} F $$ $$ F[x] / \langle x - 1 \rangle \cong F $$

Q7

$$a(x, y) = x \in J, b(x, y) = y \in J$$

But there is no polynomial in $F[x, y]$ such that $a(x, y) = r(x, y)b(x, y)$ and vice versa. Therefore $J$ cannot be principal and $F[x, y]$ can have non-principal ideals.

E. Proof of the Unique Factorization Theorem

Q1

Euclid's lemma for polynomials: let $p(x)$ be irreducible. If $p(x) \mid a(x)b(x)$ then $p(x) \mid a(x)$ or $p(x) \mid b(x)$.

If $p(x) \mid a(x)$ we are done. So lets assume $p(x) \nmid a(x)$. What integers are common divisors?

$p(x)$ is irreducible, so the only divisors are $\pm 1$ and $\pm p(x)$. But $p(x) \nmid a(x)$, so $\pm p(x)$ is not a common divisor of $p(x)$ and $a(x)$. So therefore that leaves $\pm 1$ as their common divisors. So by theorem 2 $$1 = k(x)p(x) + l(x)a(x)$$ $$b(x) = k(x)p(x)b(x) + l(x)a(x)b(x)$$ But $p(x) \mid a(x)b(x)$ so there is an $h(x)$ such that $a(x)b(x) = p(x)h(x)$. Therefore $$k(x)p(x)b(x) + l(x)p(x)h(x) = b(x)$$ that is $p(x)[k(x)b(x) + l(x)h(x)] = b(x)$ or $p(x) \mid b(x)$.

Q2

Grouping terms, we see that $p \mid a_1(x)$ or $p(x) \mid (a_2(x) \cdots a_n(x))$, and if $p(x) \nmid a_1(x)$, then $p(x) \mid a_2(x)$ or $p(x) \mid (a_3(x) \cdots a_n(x))$ and so on.

For corollary 2, $p(x) \mid q_i(x)$ for one of the factors. Since the factors $q_1(x) \cdots q_r(x)$ are irreducible, so if $p(x) \mid q_i(x)$ for some integer, that means $p(x) = q_i(x)$.

Q3

Cancelling terms from both sides of $$a(x) = kp_1(x) \cdots p_r(x) = lq_1(x) \cdots q_s(x)$$ Since for all $i \in { 1, \dots, r }, p_i(x) \mid (lq_1(x) \cdots q_s(x))$ then $p_i(x) = q_j(x)$ for some j in ${ 1, \dots, s }$. Cancelling terms we eventually end up with $k = l$.

F. A Method for Computing the gcd

Q1

$$d(x) = \gcd(a(x), b(x))$$ $$a(x) = d(x)a_1(x)$$ $$b(x) = d(x)b_1(x)$$

$$a(x) = b(x)q_1(x) + r_1(x)$$ $$d(x)a_1(x) = d(x)b_1(x)q_1(x) + r_1(x)$$ $$r_1(x) = d(x)(a_1(x) - b_1(x)q_1(x))$$ $$\implies d(x) \mid r_1(x)$$

Q2

Using a long division calculator.

$$x^4 + x^3 + 2x^2 + x - 1 = (x^3 + 1)(x + 1) + (2x^2 - 2)$$ $$x^3 + 1 = (2x^2 - 2)(\frac{x}{2}) + (x + 1)$$ $$2x^2 - 2 = (x + 1)(2x - 2) + 0$$ $\implies$ gcd is $x + 1$

Q3

\begin{align*} x^24 - 1 &= (x^15 - 1)x^9 + (x^9 - 1) \ x^15 - 1 &= (x^9 - 1)x^6 + (x^6 - 1) \ x^9 - 1 &= (x^6 - 1)x^3 + (x^3 - 1) \ x^6 - 1 &= (x^3 - 1)x^3 + (x^3 - 1) \ x^3 - 1 &= (x^3 - 1)1 + 0 \end{align*}

gcd is $x^3 - 1$

Q4

$$x^4 + x^3 + 2x^2 + 2x = (x^3 + x^2 + x + 1)x + (x^2 + x)$$ $$x^3 + x^2 + x + 1 = (x^2 + x)x + (x + 1)$$ $$x^2 + x = (x + 1)x + 0$$

gcd is $x + 1$

F. A Transformation of $F[x]$

Q1

\begin{align*} h[a(x)b(x)] &= h(a_0b_0 + (a_0b_1 + a_1b_0)x + \cdots + a_n b_n x^{2n}) \ &= a_0b_0 x^{2n} + (a_0b_1 + a_1b_0)x^{2n - 1} + \cdots + a_n b_n \ h[a(x)]h[b(x)] &= h(a_0 + a_1x + \cdots + a_n x^n) h(b_0 + b_1x + \cdots + b_n x^n) \ &= (a_0 x^n + a_1 x^{n - 1} + \cdots + a_n)(b_0 x^n + b_1 x^{n - 1} + \cdots + b_n) \ &= a_0b_0 x^{2n} + (a_0b_1 + b_0a_1)x^{2n - 1} + \cdots + a_n b_n \end{align*}

Q2

Injective: $\forall a(x), b(x) \in F[x], h[a(x)] = h[b(x)] \implies a(x) = b(x)$. This is trivially visible.

Surjective: $\forall b(x) \in F[x], \exists a(x) \in F[x]: h[a(x)] = b(x)$. The value of $a(x)$ is simply $b(x)$.

Indeed $h(h(a_0 + a_1 x + \cdots + a_n x^n)) = h(a_n + a_{n - 1} x + \cdots + a_0 x^n) = a_0 + a_1x + \cdots + a_n x^n$. This means that $h \cdot h = \epsilon$.

Q3

Let $a(x) = a_0 + a_1x + \cdots + a_n x^n$ be irreducible but $b(x) = a_n + a_{n-1}x + \cdots + a_0 x^n$ be reducible so that $b(x) = c(x)d(x)$. But then $a(x) = h[b(x)] = h[c(x)d(x)] = h[c(x)]h[d(x)]$ meaning $a(x)$ is in fact reducible.

Q4

\begin{align*} h(a_0 + a_1x + \cdots + a_n x^n) &= a_n + a_{n-1}x + \cdots + a_0 x^n \ &= h[(b_0 + \cdots + b_m x^m)(c_0 + \cdots + c_q x^q)] \ &= h(b_0 + \cdots + b_m x^m) h(c_0 + \cdots + c_q x^q) \ a_n + a_{n-1}x + \cdots + a_0 x^n &= (b_m + \cdots + b_0 x^m) (c_q + \cdots + c_0 x^q) \ \end{align*}

Q5

$$a(c) = 0 \implies a(x) = b(x)(x - c)$$ \begin{align*} \bar{a}(x) = h[a(x)] &= h[b(x)]h(x - c) \ &= h[b(x)](1 - cx) \ \ \bar{a}(1/c) &= h[b(1/c)][1 - c(1/c)] \ &= 0 \end{align*}