Skip to content

aashishkolluri/lpgnet-prototype

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LPGNet

We provide a prototype of Link Private Graph Networks (LPGNet) that can be used for semi-supervised node classification with edge differential privacy. Please read our paper for more information.

We suggest using Anaconda for managing the environment

Setting up conda

wget https://repo.anaconda.com/archive/Anaconda3-2021.11-Linux-x86_64.sh
bash Anaconda3-2021.11-Linux-x86_64.sh
conda env create -n [env_name] --file environment.yml

The data for linkteller is given in their official repository. Please download the zip file from their drive and extract it into the data folder.

Arguments and Usage

Usage

usage: main.py [-h]
               --arch {mlp,mmlp,gcn}
               [--dataset {cora,citeseer,pubmed,facebook_page,twitch/ES,flickr,bipartite,chameleon}]
               [--test_dataset {twitch/RU,twitch/DE,twitch/FR,twitch/ENGB,twitch/PTBR}]
               [--hidden_size HIDDEN_SIZE]
               [--num_hidden NUM_HIDDEN]
               [--nl NL]
               [--w_dp]
               [--eps EPS]
               [--outdir OUTDIR]
               [--num_seeds NUM_SEEDS] 
               [--sample_seed SAMPLE_SEED]
               [--cuda_id CUDA_ID]
               [--no_cuda]
               {train,evaluate,attack} ...

Quick high-level reference table

Short Long Default
-h --help
--dataset <Dataset.Cora: 'cora'>
--arch <Architecture.MMLP: 'mmlp'>
--nl -1
--num_seeds 1
--sample_seed 42
--cuda_id 0
--no_cuda
--eps 0.0
--w_dp
--hidden_size 16
--num_hidden 2
--outdir ../results
--test_dataset None

Subparser train reference table

Short Long Default
--dropout 0.1
--lr 0.05
--num_epochs 500

Subparser attack reference table

Short Long Default
--dropout 0.1
--lr 0.05
--influence 0.001
--sample_type balanced
--attack_mode efficient
--n-test 500
--model_path

--dataset (Default: <Dataset.Cora: 'cora'>)

cora|citeseer|pubmed...

--arch (Default: <Architecture.MMLP: 'mmlp'>)

Type of architecture to train: mmlp|gcn|mlp

--nl (Default: -1)

Only use for MMLP, Number of stacked models, default=-1

--eps (Default: 0.0)

The privacy budget. If 0, then do not DP train the arch

--w_dp

Run with DP guarantees - if eps=0.0 it throws a warning

--hidden_size (Default: 16)

Size of the hidden layers

--num_hidden (Default: 2)

Number of hidden layers

--outdir (Default: ../results)

Directory to save the models and results

--test_dataset (Default: None)

Test on this dataset, used for Twitch

--sample_type (Default: balanced)

Determines how we sample edges for attack.

--attack_mode (Default: efficient)

Choose baseline for running LPA and efficient for LinkTeller.

Quick Start: Training and Attacking single models

Run training for a single model and dataset with DP

python main.py --dataset [Dataset] --arch [mmlp|gcn|mlp] --nl [# stack layers for mmlp] --w_dp --eps [Eps] --sample_seed [Seed] --hidden_size [HID_s] --num_hidden [HID_n] train --lr [Lr] --dropout [Dropout]

  • Here is an example to train a GCN

python main.py --dataset cora --arch gcn --w_dp --eps 4.0 --sample_seed 42 --hidden_size 256 --num_hidden 2 train --lr 0.01 --dropout 0.2

  • Here is an example to train an LPGNet (mmlp) and store results in ../results

python main.py --dataset cora --arch mmlp --nl 2 --w_dp --eps 4.0 --sample_seed 42 --hidden_size 256 --num_hidden 2 --outdir ../results train --lr 0.01 --dropout 0.2

You can also run for multiple seeds using the --num_seeds option. The results are stored in the folder defined in globals.py or the directory specified using the --outdir option. The trained models are stored in the args.outdir/models directory.

Run the attacks on a single trained model

To run attack on a trained model, we need all the options used for training that model and a few options in addition such as the attack_mode and sample_type (samples for evaluation).

python main.py --dataset [Dataset] --arch [mmlp|gcn|mlp] --nl [# stack layers for mmlp] --w_dp --eps [Eps] --sample_seed [Seed] --hidden_size [HID_s] --num_hidden [HID_n] --outdir [Outdir] **attack** --lr [Lr] --dropout [Dropout] --attack_mode [bbaseline (lpa) | efficient (linkteller)] --sample_type [balanced | unbalanced]

  • Here is an example to attack an LPGNet model stored in ../results/models/

python main.py --dataset cora --arch mmlp --nl 2 --w_dp --eps 4.0 --sample_seed 42 --hidden_size 256 --num_hidden 2 --outdir ../results attack --lr 0.01 --dropout 0.2 --attack_mode baseline --sample_type balanced

You can also give a custom model path for attack. For instance, here is an example to attack an LPGNet (mmlp) with 2 additional mlp models. Say the models are stored in

  1. ../results/models/mmlp_0/mmlp_0.pth (base MLP)
  2. ../results/models/mmlp_1/mmlp_1.pth (additional stack layer 1), and
  3. ../results/models/mmlp_2/mmlp_2.pth (additional stack layer 2)

python main.py --dataset cora --arch mmlp --nl 2 --w_dp --eps 4.0 --sample_seed 42 --hidden_size 256 --num_hidden 2 --outdir ../results attack --lr 0.01 --dropout 0.2 --model_path mmlp_0/mmlp_0.pth,mmlp_1/mmlp_1.pth,mmlp_2/mmlp_2.pth --attack_mode efficient --sample_type unbalanced

The attack results are stored inthe directory with name eval_[dataset] which is placed in the current directory.

Reproducing the results

To reproduce the results we provide a script in run_exp.py. You can write your own scipt as well that follows the general procedure explained below.

Hyperparameter search for transductive datasets

python run_exp.py --num_seeds 30 --command train --outdir ../data-hyperparams --hyperparameters --todos_dir [todos]

  • or if you wish to run on more GPUs

for cuda in $(seq 0 7); do python run_exp.py --num_seeds 30 --command train --outdir ../data-hyperparams --hyperparameters --todos_dir [todos] --cuda_id $cuda & done

Hyperparameter search for inductive datasets

python run_exp.py --num_seeds 30 --command train --outdir ../data-hyperparams-inductive --hyperparameters --todos_dir [todos] --inductive

  • or if you wish to spawn one process per GPU (0-7)

for cuda in $(seq 0 7); do python run_exp.py --num_seeds 30 --command train --outdir ../data-hyperparams-inductive --hyperparameters --todos_dir [todos] --cuda_id $cuda --inductive & done

Note: For Twitch datasets please add this option --num_epochs 200

Parse the best configuration for (dataset, architecture)

python run_exp.py --parse_config_dir [data-hyperparameters-dir]

This creates a file best_config.pkl in the local directory which contains the best hyperparameters.

Training Models

Run the training based on the best hyperparameters for transductive

python run_exp.py --num_seeds 30 --command train --outdir [results-dir] --todos_dir [todos] --best_config_file [best_config.pl]

The [results-dir] and [todos] can be any directory paths where you want to save the results and cache the todo/finished tasks respectively.

Run the training based on the best hyperparameters for inductive

For Twitch datasets

python run_exp.py --num_seeds 30 --num_epochs 200 --command train --inductive --datasets TwitchES --best_config_file [best_config.pl] --outdir [results-dir] --todos_dir [todos]

For Flickr dataset

python run_exp.py --inductive --datasets Flickr --command train --num_seeds 5 --todos_dir [todos] --outdir [results-dir] --num_epochs 500

This command will take large resources (close to 100GB memory per such command). This will also cache additional matrices in your data directory where the flickr training matrices are loaded from.

Attacking the Trained Models

Run the attacks on the trained models for transductive

For attacks the --outdir option is used to provide the path to the trained models which is the same as the corresponding path used to run the training command. The attack commands save the results in the current directory with "eval_" as a prefix.

python run_exp.py --num_seeds 5 --command attack --best_config_file [best_config.pl] --outdir [results-dir] --todos_dir [todos]

Run the attacks on the trained models for inductive

For Twitch datasets

python run_exp.py --num_seeds 5 --num_epochs 200 --command attack --datasets TwitchES --best_config_file [best_config.pl] --outdir [results-dir] --todos_dir [todos]

For Flickr dataset

python run_exp.py --outdir [results-dir] --todos_dir [todos] --num_seeds 5 --command attack --datasets Flickr

Parsing the Results

Parse results to get utility scores

Provide path to the results directory used during the training.

For transductive

python parser_ash.py --results_dir [results-dir]

For inductive

python parser_ash_ind_utility.py --results_dir [results-dir]

Parse results to get attack AUC scores

For both transductive and inductive provide the path to the directory with saved models ( "eval_" as prefix)

python parser_ash_trans_attack.py --results_dir [results-dir]

All the parsed results will be output in the results folder.

If the code was helpful to you then please cite our work.

@article{kolluri2022lpgnet,
  title={LPGNet: Link Private Graph Networks for Node Classification},
  author={Kolluri, Aashish and Baluta, Teodora and Hooi, Bryan and Saxena, Prateek},
  journal={arXiv preprint arXiv:2205.03105},
  year={2022}
}

About

A prototype implementation for Link Private Graph Network (LPGNet)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages