Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ZeroDivisionError: float division by zero. #2649

Open
niubiworker opened this issue Sep 23, 2023 · 1 comment
Open

ZeroDivisionError: float division by zero. #2649

niubiworker opened this issue Sep 23, 2023 · 1 comment

Comments

@niubiworker
Copy link

I was trying to use Meep to calculate the transmission loss of photonic crystal waveguides, but after running it, I encountered the following error: ZeroDivisionError: float division by zero. Why does this problem occur?

import meep as mp
import matplotlib.pyplot as plt
from meep.materials import LiNbO3
resolution = 10 # pixels/a

a = 0.775         # units of um
r = 0.315*a         # units of um
h = 0.3       # units of um

period_num = 50
wave_length = 1.55
fcen = 1/wave_length
df = 0.1
pml_height = 0.5*wave_length
y_num = 6

geometry_up_boundary = y_num*np.sqrt(3)*a+2*pml_height
geometry_left_boundary = period_num*a+2*pml_height
size = mp.Vector3(geometry_left_boundary,h+10*pml_height,geometry_up_boundary*2)
w = np.sqrt(3)*a

geometry = [mp.Block(center=mp.Vector3(0,0,0),size=mp.Vector3(geometry_left_boundary*2,h,geometry_up_boundary), material=LiNbO3)]

pml_layers = [mp.PML(pml_height)]

sources = [mp.Source(mp.GaussianSource(frequency=fcen,fwidth=df),
                     component=mp.Ez,
                     center=mp.Vector3(-geometry_left_boundary/2+pml_height,0,0),
                     size=mp.Vector3(0,h,w))]

sim = mp.Simulation(resolution=resolution,
                    cell_size=size,
                    geometry=geometry,
                    boundary_layers=pml_layers,
                    sources=sources,
                    eps_averaging=True,
                    symmetries=[mp.Mirror(mp.Y,phase=1)],
                    Courant=0.02)

nfreq = 10
ref1_local = -period_num/2*a+pml_height+0.5*a

ref1_fr = mp.FluxRegion(center=mp.Vector3(ref1_local,0,0),
                        size=mp.Vector3(0,2*h,2*w),
                        direction=mp.X)
ref1 = sim.add_flux(fcen,df,nfreq,ref1_fr)

tran_fr = mp.FluxRegion(center=mp.Vector3(ref1_local+period_num*a,0,0),
                        size=mp.Vector3(0,2*h,2*w),
                        direction=mp.X)
tran = sim.add_flux(fcen,df,nfreq,tran_fr)

# run
pt = mp.Vector3(ref1_local+period_num*a-0.5*a,0,0)
sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ez, pt, 1e-3))
print(sim.get_flux_data(tran))
straight_ref1_data = sim.get_flux_data(ref1)
straight_tran_flux = mp.get_fluxes(tran)

sim.reset_meep()

geometry = [mp.Block(center=mp.Vector3(0,0,0),size=mp.Vector3(geometry_left_boundary*2,h,geometry_up_boundary), material=LiNbO3)]
for i in np.linspace(-geometry_left_boundary,geometry_left_boundary,period_num*2+1):
    for j in np.linspace(-geometry_up_boundary,geometry_up_boundary,2*y_num+1):
        if j != 0:
            geometry += [mp.Cylinder(center=mp.Vector3(i, 0, j, ), height=mp.inf, material=mp.air, radius=r,axis=mp.Vector3(y=1))]
            geometry += [mp.Cylinder(center=mp.Vector3(i + 0.5 * a, 0, np.sqrt(3) / 2 * a + j, ), height=mp.inf, material=mp.air,radius=r,axis=mp.Vector3(y=1))]
            geometry += [mp.Cylinder(center=mp.Vector3(i + 0.5 * a, 0, -np.sqrt(3) / 2 * a + j, ), height=mp.inf, material=mp.air,radius=r,axis=mp.Vector3(y=1))]

sim = mp.Simulation(resolution=resolution,
                    cell_size=size,
                    geometry=geometry,
                    boundary_layers=pml_layers,
                    sources=sources,
                    symmetries=[mp.Mirror(mp.Y,phase=1)],
                    Courant=0.02)

ref1 = sim.add_flux(fcen,df,nfreq,ref1_fr)
tran = sim.add_flux(fcen,df,nfreq,tran_fr)
sim.load_minus_flux_data(ref1,straight_ref1_data)
sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ez, pt, 1e-3))

pc_ref1_flux = mp.get_fluxes(ref1)
pc_tran_flux = mp.get_fluxes(tran)

flux_freqs = mp.get_flux_freqs(ref1)

wl = []
Rs = []
Ts = []
for i in range(nfreq):
    wl = np.append(wl, 1 / flux_freqs[i])
    Rs = np.append(Rs, -pc_ref1_flux[i] / straight_tran_flux[i])
    Ts = np.append(Ts, pc_tran_flux[i] / straight_tran_flux[i])

plt.plot(wl, Rs, "bo-", label="reflectance")
plt.plot(wl, Ts, "ro-", label="transmittance")
plt.plot(wl, 1 - Rs - Ts, "go-", label="loss")
plt.xlim(min(wl),max(wl))
plt.xlabel("wavelength (μm)")
plt.legend(loc="upper right")
plt.show()```
@leSemaleon
Copy link

I had this problem too.
Rs = np.append(Rs, -pc_ref1_flux[i] / straight_tran_flux[i])
Ts = np.append(Ts, pc_tran_flux[i] / straight_tran_flux[i])
Here you have zero in denominator

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants