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Chapter 1  

Introduction 
 In the past 10 years within the genomics field, high-throughput technologies and decreasing 

costs have enabled researcher the ability to access and generate increasingly larger amounts of data 

(Schadt et al., 2010). Making sense of all the data can quickly become an overwhelming challenge for 

researchers. In addition, they often need to integrate existing prior knowledge into their analysis as 

well as many different types of data, such as DNA-seq, RNA-seq, Methyl-seq, and ChIP-seq. Not 

only do researchers have to design methods for analysis of the data in meaningful ways, they are also 

under time constraints to get the data analyzed and published quickly. As a result, researchers often 

rely on existing analytic tools or need to have the ability to quickly design new tools to address their 

specific analysis problem. 

 Some sequence analysis problems, such as sequence assembly, alignment, and gene finding, 

have a well-established base of software. However, when it comes to other problems, such as R-loop 

prediction or methylation domain classification, there are not any predesigned tools. Consequently,  

the only option for researchers is to spend precious time developing new tools. Development of 

new tools, however, can be both time consuming and error prone. In most instances, these new 

tools are typically a re-implementation and adaptation of existing data analysis methods. 

 Hidden Markov models (HMMs) are an example of an established analysis method that have 

been widely applied in bioinformatics. In the past 20 years, HMMs have been applied to a wide-

range of sequence analysis problems including sequence alignment, gene finding, motif finding, peak 

finding, base calling, SNP calling, copy number variation calling, and chromatin status prediction. 

HMMs form the basis of many bioinformatics programs for three main reasons. First, they are 

conceptually simple to understand and relate to many different linear labeling problems(Brejová and 



-2- 
 

Brown, 2008). HMMs label linear events in a linear dependent fashion, much the same that we 

organize events in time. Second, HMMs are modular. The modularity means that a complex 

problem can be easily broken into multiple simple models. The simple models can be trained and 

easily combined to solve the complex problem(Cherry, 2001). Third, HMMs are built upon a simple 

and powerful statistical framework (Eddy, 2004). This provides the user the to ability to adapt the 

framework in many different ways and maintain the statistical foundation. It also means that after a 

model is trained, the user can infer information from the organization and parameters of the 

model(Cherry, 2001). However in order to take advantage of the strengths of HMMs in labeling 

linear data, researchers have to first implement multiple algorithms, then train and test a model.  

1.1 Brief Historical Background of HMMs 

In 1906, Andrey Markov published a paper describing a memory-less stochastic process of 

“chains” based upon Bernoulli’s and Chebyshev’s work on sequences of independent random 

variables(Markov, 1906). His work, which later became known as “Markov chains”, was focused on 

understanding and extending the central limit theorem and weak law of large numbers to sequences 

of dependent random variables(Basharin et al., 2004). Markov’s most famous implementation of 

Markov chains was his analysis of the first and part of the second chapter of Alexander Pushkin’s 

novel Eugene Onegin, where he analyzed and created a model based upon patterns of consonants and 

vowels(Hayes, 2013; Markov, 2007). The model could then be used to generate words and phrases 

that were similar to Pushkin’s work or to calculate the probability that another work was written by 

Alexander Pushkin.  

Markov models were merely seen as a statistical proof until the communications field 

adopted them in the late 1940s. In the 1948, Claude Shannon’s paper “A Mathematical Theory of 

Communications” described the need to apply stochastic and deterministic models in the field of 
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communications to account for noise within communications(Shannon, 2001). Shannon used 

Markov models and their statistical foundation to help formulate information theory(Shannon, 

2001). Markov models were seen as generative models up until the late 1960s, when Leonard E. 

Baum described how to infer an unknown states by using additional observations(Baum and Petrie, 

1966). Baum’s was the first description of what are formally known as HMMs. A year later, Andrew 

Viterbi described an algorithm that would find the most likely state path of an HMM model given a 

sequence of observations (Viterbi, 1967). This became known as the Viterbi algorithm and has 

gained wide acceptance in many research and technology fields. Additional advancements came in 

1970, when Leonard Baum and Lloyd Welch introduced the forward-backward algorithm that could 

be used to compute the posterior probability of the model and determine model parameters when a 

training set with defined states was not available(Baum, Petrie, Soules, and Weiss, 1970b). HMMs 

remained fairly obscure until 1980, when Jack Ferguson and his colleagues at the Institute for 

Defense Analyses provided a seminar for a select group of researchers detailing the application of 

HMMs to speech and text(Rabiner). In 1986, Rabiner published a paper titled “An Introduction to 

Hidden Markov Models”, which detailed the statistics and algorithms behind HMMs. That paper 

and his subsequent paper are now some of the most cited HMM papers and are many researchers 

first introduction to HMMs(Rabiner and Juang, 1986; Rabiner, 1989). Since the late 1980s, HMMs 

have become ubiquitous within the fields of communication and speech recognition, and the basis 

of modern communication devices such as the cell phone, and wireless networks(Ephraim and 

Merhav, 2002).  

With the advancement of sequencing technology in the late 1980s, it did not take long for 

biologists to see the advantages that HMMs could provide in the analysis of DNA sequences. In 

1989, Gary Churchill applied HMMs to multiple mitochondria sequences and human X 

chromosome sequence fragments. He showed that HMMs could be used to annotate origins of 
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replication and isochore boundaries(Churchill, 1989). Since 1989, HMMs have become the basis for 

many bioinformatics tools. 

1.2 Markov Models Basics 

Andrey Markov described Markov models as a set of states (represented as circles) with 

transitions that linked the states (represented as arrows), each of the transitions had a given 

transition probabilities (see Figure 1-1)(Markov, 1906).  

 

Figure 1-1 Example Markov Chain of 3 states. Cloudy, Rainy, and Sunny are states (drawn as circles). Transitions between states 
are drawn as arrows with an accompanying probability for the transition.  

 

Because of the probabilistic basis of Markov models all the transition probabilities exiting from a 

state must sum to 1. If a transition is has a probability of 0, the transition is not allowed. Markov 

models are described as “memory-less” because the next state is only dependent upon the current 

state and possibly a limited number of previous states. Using Figure 1-1 as an example, if we start in 

the “Sunny” state, we can transition to either the “Sunny” or “Cloudy” states. If we then transition 

to the “Cloudy” state, the next choice is whether to transition to “Cloudy”, “Rainy”, or “Sunny”. 

The second transition is independent of where we started. A starting state can be defined by a set of 

transition probabilities from an initial state (qo) (Rabiner and Juang, 1986; Majoros, 2007). The 
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starting state transitions are essentially the prior probability of starting at a particular state. Likewise, 

a set of possible ending states can be defined by a set of transition probabilities(Ω) to an ending 

state(qe)(Durbin, 1998). The starting and ending states are often left out of the model diagrams and 

simply defined as a parameter of the model. They provide the ability to define valid starting and 

ending states for the model. 

Through varying the topology (number of states and the transitions) between the states, we 

can model many different phenomena. The states and their transitions setup rules for what sequence 

of states the model can generate and the average time spent in a state. This allows us to model 

observed rules or parameters of the sequence we are studying. These rules are referred to as the 

grammar (sequences of states that are and are not allowed, and the distribution of states) (Durbin, 

1998). Thus, Figure 1-1 could generate a path (Sunny, Sunny, Cloudy, Rainy, Sunny). However, it 

could not generate a sequence: (Sunny, Rainy), because the transition probability from Sunny to 

Rainy states is zero.  

The average amount of time spent in a state can be determined from the transitions 

probabilities. A state with no transitions to itself can only have duration of 1. But states with 

transitions to themselves have a length distributions that are a geometric distribution( ) 

(Figure 1-2) (Brejová and Brown, 2008; Durbin, 1998). However, if we want to model something 

with a non-geometric distribution, we have to link multiple states in such a way as to get a different 

distribution. If we link multiple geometric distributed states together, we can achieve a negative 

binomial distribution (Durbin, 1998). Modeling more complex distributions of length(N-1) is 

accomplished by linking N individual states and setting the transitions to the last state for each of 

the previous state equal to the cumulative distribution function (Figure 1-3)(Durbin, 1998). 

E x( ) = 1
1− p
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Modeling different distributions through this method drastically increases the number of state and as 

a consequence the complexity of the model. 

 

Figure 1-2 Plot of geometric length distribution generated by self-transitioning state. State with self-transition set to 0.9 on 
average will produce length of 10 (dotted line).  

 

 

Figure 1-3 Modeling any distributions by linking a series of states together. Dotted lines and states represent multiple states 
necessary to model a distribution of length (N). The distribution is modeled by setting the transitions to the state(N) equal to the 
cumulative distribution function.  

Markov models are trained from existing data by counting all transitions between states. The 

transitions from a state are normalized to 1 to give a probability of transitioning to different states. 

These are often represented as probabilities accompanying the transition arrow (Figure 1-1) or as 

transition matrix. Given a sequence of weather, where S=Sunny, C=Cloudy, R=Rainy: 
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(S,S,S,S,S,S,S,S,S,S,S,C,C,R,S,S,S,C,R,C,S, so on…) 

we can generate a transitions matrix (A). 

! = !
0.9 0.1 0
0.5 0.3 0.2
0.5 0.4 0.1

 

Once the model has been trained, it can be used as a stochastic machine to generate 

sequences similar to the training data or it can be used to infer probabilities of a new path through 

the model. For example, given a sequence of states, we can quickly calculate the probability of the 

path through the states and compare them to other states paths. 

! !"##$, !"!!",!"#$%&,!"#$%|!!"#$"!!"!!"##$ = !0.9!×!0.9!×!0.1!×!0.2 = 0.0162  

! !"##$, !"##$, !"##$, !"##$|!!"#$"!!"!!"##$ = !0.9! = 0.6561     

The model also allows us to quickly infer the likelihood that the model will be in a particular state at 

a future time. For example, if we start at the Sunny state, what is the probability of ending in the 

Sunny state at 5 time points later?  

! !"#"$%!!"!! + 5 !!"#$"!!"!!"##$! = 1!0!0 ∙ !! = [0.83504!!0.13534!!0.02962]  

We see that the model has a probability of 0.83504 of ending in a Sunny state.  The model allowed 

us to model future events and assign them a probability. While these examples are basic, more 

complex Markov models can be applied to predict financial markets or hurricane paths.    

 In sum, the Markov model provides a powerful means to analyze past events or to predict 

future events. While the Markov model is informative, there are many instances when the states are 

not observable and all we can observe is some emission or observation that is emitted from a state. 

An example of this is when we sequence DNA and want to annotate protein coding gene structure. 
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We observe the DNA base call generated by the sequencer, but we do not know whether the DNA 

base call corresponds to an intergenic state or a protein coding state. A similar problem was 

addressed by Baum in 1966, while he was working for the Institute for Defense Analyses on speech 

and text modeling(Baum and Petrie, 1966). His solution became known as a hidden Markov model.  

1.3 Hidden Markov Models 

Hidden Markov models are a subclass of Markov models in which the states are hidden and 

emitted observations are linked to the states as a second stochastic process. The observations, also 

referred to as the emissions, allow us to infer which state most likely output the observation 

state(Baum and Petrie, 1966). Each state can emit a single or multiple emissions. These emissions 

can be either discrete (associated with finite set of values) or continuous distributions (associated 

with any value between a range)(Rabiner, 1989). Emissions can also have a defined dependence 

upon a set number of previous emissions and is referred to as an emission’s “order of dependence” 

or “order”. The order of a states emission can vary from state to state. Therefore, a first-order 

emissions probability is P(x = emission | previous emission) . Figure 1-4 shows a model with 

zeroth-order emissions (not dependent upon any previous emissions) for all the states.  
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Figure 1-4 Example HMM of 3 states with associated emissions and initial/ending state. Emissions and emission 
probabilities for states are represented as squares linked by double line to the state. Initial state probabilities are described values of 
dotted lines from qo and Ending state transitions are all defined as 1 to qe.  

1.3.1 Developing & Training Models 

The development and training phase of a project is key to its success. It is the initial point 

where a researchers prior knowledge and understanding of the underlying biological problem help to 

define the initial parameters of the model. Some initial parameters include the model topology 

(number and organization of states), emissions, and in some cases emission and transitions 

probabilities. For the most part the topology is determined by hand and then refined through 

multiple rounds of testing(Durbin, 1998; Majoros, 2007). Previous research showed that automatic 

production of a model’s topology using a genetic algorithm was not a viable solution to solve 

complex models(Won et al., 2004).  Won et al also found that of smaller models, which were 

generated automatically, performed similar to hand-designed models but without a clear biological 

correlation of each state.  

Once a topology is determined and a sequence of observations for which the state path is 

known, a model can be trained. Training is performed by merely counting the occurrence of 

emissions and transition for the training sequence and its state path(Brejová and Brown, 2008; 
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Durbin, 1998). If the specific state path is unavailable for the observation sequence, then additional 

training methods are necessary, such as Viterbi training (Lam and Meyer, 2009a; Majoros, 2007) or 

Baum-Welch training (Baum, Petrie, Soules, and Weiss, 1970a; Baum, 1972) can be performed.  

 Two additional techniques are commonly applied after the initial training of the model to 

improve performance. The first method, called boosting, tests the model on the training set, then 

duplicates poorly scoring examples in the training set and repeats the training using the new training 

set(Majoros, 2007). The second method, called bootstrapping, entails using a model trained in a 

different organism to create a training set in new organism. The model is first trained in a different 

organism. The model is used to make predictions on the new organism and the prediction results are 

added to the old training set(Korf, 2004). However, judicious use of both methods is necessary to 

prevent the model from becoming trained so that it is specific to the training set. Such a model will 

produce highly accurate predictions when using the training dataset, but poor predictions when 

applied to a test dataset.  

 Once a model has been trained, we can then infer the state path through the model that 

most likely generated a set of observations. To do this we could calculate the probability for each 

possible path and choose the most likely path. However, this naïve approach would require 

approximately 1 million calculations for a sequence of 10 observation using Figure 1-4 and would 

increase exponentially as the number of observations increased. More efficient algorithms (methods 

of calculation) were discovered, which reduced the number of calculation from 1 million to 

approximately 160 for a sequence of 10 observations using Figure 1-4(Rabiner, 1989).  
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1.3.2 HMM Algorithms 

Because HMM algorithms are methods to efficiently calculate different solutions, they are 

often defined in mathematical terms. Each parameter of an HMM is assigned a variable; see Table 1-

1(Rabiner, 1989).  

Table 1-1 Variable description for parts of an hidden Markov model (Rabiner, 1989) 

Variables Descriptions 

λ Model 
Q=(q1…qN) States 
N Number of states in Model 
A=(a11…aij) Transition probabilities  
!=(!1… !N) Initial state transition 
Ω=(ω1…ωN) Ending state transition 
B=P(vm|qn) Emission probabilities 
V=(v1…vM) Emission Alphabet/Words 
M Number of Emission 

Symbols O=(O1…OT) Observation Sequence 
T Length of Sequence 
! Forward score 
β Backward score 
δ Viterbi score 
Ψ Traceback pointer 
! Posterior probability 

 

The HMM algorithms efficiently solve three different probability questions regarding a model and a 

set of observations: 

1) What is the probability that the model produced the observations sequence?  

2) What is the probability that an observation was emitted by a given state?  

3) What is the most likely path of states through the model given the observations?  

The first two questions are answered by calculating the forward-backward algorithm. The Viterbi 

algorithm solves the third question. 
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1.3.2.1 Forward-Backward Algorithm 

The forward-backward algorithm is a dynamic programming (DP) algorithm that propagates 

the probability through all possible paths for a set of observations. The DP algorithms alleviates the 

need to calculate each path separately and drastically reduce the number of calculations 

necessary(Rabiner and Juang, 1986). The forward moves from the start of the observations and 

progresses through all states toward the end of the observations, while the backward operates in 

reverse.  

The forward and backward algorithms can be broken into 3 distinct stages: Initiation (1.1), 

Recursion (1.2), and Termination (1.3) (Durbin, 1998; Rabiner, 1989). The forward algorithms 

initialization step is defined equation (1.1), which defines the possible starting states. The recursion 

step (1.2) propagates the probability along all paths through the observations. Finally, the 

termination step joins the probabilities from the valid ending states and produces the probability 

that the model output the observation sequence(1.3). 

Initialization:  (1.1) 

Recursion:   (1.2) 

Termination:   (1.3) 

The backward algorithm is very similar to the forward at first look. However, comparing the 

(1.1) to (1.4) and (1.2) to (1.5) show that the backward calculation does not use the emission variable 

for the current state calculation but uses the bj(Ot+1) observation. Both the forward and backward 

should arrive at the same value P(O|λ) (1.6) (Durbin, 1998; Rabiner, 1989).  

α1(i) = π i ⋅bi O1( ),  for 1≤ i ≤ N

α t+1( j) = α t (i) ⋅aij
i=1

N

∑⎡
⎣⎢

⎤
⎦⎥
⋅bj Ot+1( ),  for 1≤ t ≤ T ,  1≤ j ≤ N

P O | λ( ) = αT (i) ⋅
i=1

N

∑ ω (i),  for 1≤ i ≤ N
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Initialization:    (1.4) 

Recursion:   (1.5) 

Termination:   (1.6) 

 Using the values calculated by the forward-backward algorithm and equation (1.7), the 

posterior probability can be calculated for each state at every position (Rabiner, 1989).  

   (1.7) 

The posterior probability is the probability that a state at a particular position output the observation 

at that position. The forward score represents the probability from the beginning of the sequence to 

a given point and the backward score represents the probability from the end of the sequence to the 

given point. 

1.3.2.2 Posterior Decoding Algorithm 

The posterior probability can be used to select a path of states through the model for a given 

set of observations, known as posterior decoding. Unlike the Viterbi decoding, which choses the 

path with the highest overall probability, posterior decoding selects the most likely state for each 

observation(Durbin, 1998; Majoros, 2007). Because posterior decoding doesn’t depend upon the 

path, it can return state paths that have invalid grammar. Posterior decoding is recommended when 

many paths may be equally likely(Durbin, 1998) or when we are not interested in overall most likely 

path, but rather the likelihood that a state output the observation.  

 

βT i( ) =ω i ,  for 1≤ i ≤ N

 
βt i( ) = aij ⋅βt+1 j( )

j=1

N

∑ ⋅bj Ot+1( ),  for t = T -11,  1≤ i ≤ N

P O | λ( ) = π i ⋅β1 i( )
i=1

N

∑ ⋅bi O1( ),  for 1≤ i ≤ N

γ t i( ) = P(qi |Ot ) =
α t i( ) ⋅βt i( )
P O | λ( )
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1.3.2.3 Viterbi Decoding Algorithm  

The Viterbi algorithm provides a solution to find the most likely path through the model given a 

sequence. It is closely related to the Forward algorithm and very similar to the Needleman-Wunsch 

global alignment algorithm. The first difference to the Forward algorithm is seen in the Initialization 

step where a pointer is initialized to 0. The Viterbi algorithm changes the summation function used 

in the Forward algorithm (1.2) to the max function (1.9). Because it is seeking only the optimal 

solution, all other scores are discarded. Like alignment algorithms, it keeps traceback pointers(Ψ) for 

each state and observation(1.8)(1.9)(1.10). The traceback step (1.11) operates in reverse and follows 

the traceback pointers stored in (1.9) and (1.10) to determine the most likely overall traceback 

path(Durbin, 1998; Rabiner, 1989).  

Initialization:   (1.8) 

Recursion:   (1.9) 

Termination:   (1.10) 

Traceback:   (1.11) 

The Viterbi algorithm is guaranteed to find the overall most likely path through the model that 

created the observations. However, it only keeps track of a single pointer through the model. 

Therefore, if any other paths are equally likely, they will not be seen. This leads to race conditions, 

where the first evaluated path will be chosen over those that are equally likely (Figure 1-5). 

δ1 i( ) = π i ⋅bi O1( ),  for 1≤ i ≤ N
ψ 1 i( ) = 0

δ t j( ) = max
1≤i≤N

δ t−1 i( ) ⋅aij⎡⎣ ⎤⎦ ⋅bi Ot( ),  for 2 ≤ t ≤ T ,  1≤ j ≤ N

ψ t j( ) = argmax
1≤i≤N

δ t−1 i( ) ⋅aij⎡⎣ ⎤⎦

δ end = max
1≤i≤N

δT i( ) ⋅ω i⎡⎣ ⎤⎦,  for 1≤ i ≤ N

ψ end = qT = argmax
1≤i≤N

δT i( ) ⋅ω i⎡⎣ ⎤⎦

 qt =ψ t+1 qt+1( ),  for t=T-11
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Figure 1-5 Viterbi calculations and assigning traceback pointer of 3 equally likely paths using Weather model (Figure 1-4). 
(A) Calculation of competing Viterbi scores for the 3 states (Sunny, Cloudy, Rainy). Arrows from O(t) to O(t+1) represent transitions 
values for transitioning from current state to the next state. (B) Because of MAX and ARGMAX functions in Viterbi, the traceback 
pointer(Left pointing arrow) for the Viterbi points only to Sunny state, even though all three paths are equally likely. 

 This illustrates a limitation of the Viterbi algorithm in dealing with situations where other 

paths are equally likely. When applying the basic HMM framework and algorithms, researchers have 

encountered many such limitations. To address such limitations encountered with the basic HMM 

algorithms, researchers have adapted and extended the HMM framework.  

1.4 Extending the Hidden Markov Model Framework 

The traditional HMM framework provides powerful solutions to solve many problems, 

however, it also has limitations. First, the optimal HMM solutions isn’t always the same as the 

optimal biological solution. For example, the Viterbi and Posterior decoding algorithms are limited 

to a single prediction, while alternative splicing is a fundamental process in many eukaryotes. 

Second, the analysis problem my not fit nicely within the traditional HMM framework. Often 

researchers have additional data that needs to be integrated into the model in ways that the 

traditional HMM framework wasn’t designed to accommodate.  

Notwithstanding these limitations, HMMs simplicity and statistical foundation are the 

reasons that they are easily adapted to overcome the limitations. The two main focuses for 
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adaptation have been the HMM algorithms and abstraction of the framework to integrate additional 

data at as emission or transitions with in the model.  

1.4.1 Suboptimal paths and stochastic sampling 

The two standard HMM decoding algorithms (Posterior and Viterbi) only produce single 

paths through the states. For many years, this has been one of the limitations that have prevented 

HMM-based gene finders from predicting alternative splice isoforms. Stochastic sampling allows 

researchers to generate suboptimal paths and explore the probabilities behind those paths. The 

stochastic Forward and N-Best Viterbi algorithm addresses some of the single path limitations of 

the Posterior and Viterbi. 

1.4.1.1 Stochastic Forward 

In 1995, the stochastic Forward algorithms was proposed as a solution to overcome local 

maxima when using the Baum-Welch algorithm to train multiple alignment profile HMMs(Eddy, 

1995; Durbin, 1998). By sampling additional paths from the posterior probability(Zhu et al., 1998), 

the Baum-Welch algorithm could be nudged from local maxima and then be allowed to converge on 

the global maxima (Eddy, 1995; Durbin, 1998). Using mathematical lemmas and an algorithm 

presented by Jun Zhu(Zhu et al., 1998), the stochastic backward algorithm was applied to alternative 

isoform gene finding in SLAM(Cawley and Pachter, 2003; Alexandersson et al., 2003) and 

Augustus(Stanke, Keller, et al., 2006). The stochastic forward was also referenced as an equally viable 

alternative to the stochastic backward(Cawley and Pachter, 2003). 

The implementation of the stochastic forward is a mixture of the Viterbi and Forward 

algorithms. Initialization is the same as Viterbi algorithm. The recursion step calculates the forward 

the score (1.2) and records each transitions contribution to the full forward score (1.12). Likewise, 

the termination calculates P(O|λ) and the traceback probabilities (1.13). The traceback step of the 
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stochastic forward is a stochastic process and relies on a uniform random number generator that 

generates random variables between 0 and 1(1.13). From the end state to the first state, at each 

position a random number is generated and the traceback pointer are chosen according to the 

traceback probability (1.13). 

Initialization:    

Recursion:   (1.12) 

Termination:   (1.13) 

Traceback:   

Multiple tracebacks lead to a stochastic sampling of state paths through the model. From these paths 

the posterior probability can be estimated for sequence features(Cawley and Pachter, 2003; Stanke, 

Keller, et al., 2006). An additional advantage over using the posterior probability, is that the 

stochastically sampled path must conform to proper model grammar, where as the posterior has no 

such guarantee. 

1.4.1.2 N-best Viterbi  

 In 1990, Richard Schwartz presented an algorithm to find the Nth most likely path(Schwartz 

and Y. Chow, 1990). The N-best Viterbi is a modified Viterbi algorithm that is guaranteed to find 

the top N most likely paths for a sequence. It increases the number of Viterbi scores and traceback 

pointers stored from to one to N for each state and position for the Recursion and Termination 

steps. After the calculation of each competing Viterbi score, the scores are sorted and the best N 

Same as (1.8)

Same as (1.2)

P ψ t j( ) = i( ) = δ t−1 i( ) ⋅aij
α t+1 j( ) , for 2 ≤ t ≤ T, 1≤ j≤ N,1≤ i ≤ N

Same as (1.3)

P(ψ end = i) =
αT i( ) ⋅ω i

P O | λ( ) ,  for 1≤ i ≤ N

Select back-track path according to X~unif(0,1)
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scores are stored. This leads to an increased memory usage of at least N times. The Traceback step 

then traces back through the N pointers stored in the Termination step. The first traceback pointer 

and score correspond to the Viterbi score and path. The second corresponds to the second most 

likely path and so on.  

1.4.2 Integration of additional data 

Besides using prior knowledge to inform the model topology and training, an increasing 

popular area is integration of additional data sources into the HMM to improve predictions. Because 

of the probabilistic foundation of HMMs, data can be integrated into HMM at multiple points. 

Additional information could be included in the HMM framework through linking additional 

evidence to the transition or emission probabilities of states. Successful examples can be found in 

gene finding, where EST, protein alignments, or related genome alignments, are used to augment 

model probabilities(Brejová and Brown, 2008).  

An example of a way of incorporating additional data is through using multiple emissions 

states in the model. Multiple emission states can combine the probabilities from two or more 

observations as either independent or joint distributions. Two examples of tools that employ this 

method are AUGUSTUS+ and PennCNV. AUGUSTUS+ emits both a sequence and a gene 

structure hint jointly in order to arrive at better gene predictions(Stanke, Schöffmann, et al., 2006). 

The hints are based upon EST, protein alignments, or user knowledge. PennCNV combines 4 

different signals (intensity, allelic intensity, distance between SNPs, and allele frequencies) to predict 

the copy number state(Kai Wang, 2007). With increased availability of expression data, genome-wide 

methylation, histone modification, and replicate datasets, these data sets can be combined to 

improve sequence analysis(Stanke, Schöffmann, et al., 2006; Allen and Salzberg, 2005; Seifert et al., 

2012; Ernst and Kellis, 2012).  
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Additional data can also be integrated by adjusting the definition of the traditional HMM 

framework. For example, HMMoc provides researchers the ability to link transitions to the 

observation sequence(Lunter, 2007). A couple of examples of the most widely modified HMM 

frameworks are: 1) Generalized HMMs 2) Pair HMMs 3) Profile HMMs 

Generalized HMMs were created to address the complexity of HMMs when modeling non-

geometric length distributions, which leads to an exponential consumption of limited computational 

resources. The generalized HMMs model non-geometric length distributions by allowing a state to 

emit multiple observations with a defined length distribution instead of just a single nucleotide(Kulp 

et al., 1996; Majoros, 2007). In this way, the complexity of the model is greatly reduced and is able to 

more accurately model non-geometric length distributions. 

Pair HMMs were developed to adapt HMMs to sequence alignment. Unlike multiple 

emission states, which operates on multiple observations in tandem, the pair HMMs operates upon 

two observations independently and emits an alignment(Durbin, 1998). Thus, pair HMMs are able 

to produce results similar to Needleman-Wunsch and Smith-Waterman alignment 

algorithms(Brejová and Brown, 2008). 

Profile HMMs are a further extension of HMM, built of the basic framework of the Pair 

HMM(Durbin, 1998). Instead of operating on two sequences, the profile HMM operates upon a 

sequence and a multiple alignment profile(Krogh et al., 1994). One of the most famous examples of 

a tool that implements profiles HMMs is HMMER, which allows you to score a sequence against a 

protein family profiles and sequence domains. 
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1.5 HMM Compilers, Libraries, Toolboxes, and Applications 

Currently, there are a few different alternatives available to help researchers who need to 

develop and apply HMMs. They provide researchers with help to create HMM-based tools without 

having to invest time into implementing and debugging code for the fundamental HMM algorithms. 

These HMM implementation tools fall into four categories: 1) Compilers 2) Libraries 3) Toolboxes 

4) Applications. Compilers translate XML parameters files to HMM specific code that can then be 

integrated into applications. However, if the HMM must be changed the code must be re-generated 

and re-integrated. Libraries provide researchers with a set of functions that allow the user to 

implement a HMM application quickly. Toolboxes are packages that are provided for existing 

statistical or mathematics programs, such as R and Matlab. These typically function as teaching tools, 

because they are not designed to handle large datasets. Applications provide the most accessible 

option, however, if not implemented correctly they can also be the most restrictive.  

Even though these options exist, many of the recent HMM programs are still generated by 

hand. The primary reason being that the tools lack the necessary features and flexibility that are 

required by researcher(Lunter, 2007). Table 1-2 shows that many tools lack support for features that 

are required to allow researchers to flexibly implement HMMs. Additional reasons why they are not 

being adopted are: 1) they often lack sufficient documentation and support to allow researchers to 

adequately learn the tool. 2) Compilers and libraries are inaccessible to any researcher that doesn’t 

program in C/C++, unless they provide bindings to different languages. 3) Code often is not 

written to work on different systems or is not maintained. 
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Table 1-2 Comparison of features available in existing HMM compilers, libraries, toolkits, and applications. StochHMM is 
included in both Libraries and Applications because it is provided as both. (Lunter, 2007; Lam and Meyer, 2009b; Schliep et al., 2003; 
Sand et al., 2010; Schütz and Delorenzi, 2008)  

 

1.6 Thesis Overview 

The aim for my dissertation work have been to understand, implement, extend the HMM 

framework, and advance the usage of HMMs. The first part of this aim has been the development, 

maintenance, and support of a C++ library and application called StochHMM. The primary goal 

behind StochHMM development is to build an HMM implementation tool that provides researchers 

with the power, flexibility, and ease that they require to create HMM-based solution to their unique 

analysis problems.  

The second part of my dissertation aims has been to use StochHMM to help answer unique 

biological questions. Through collaborations and my work with StochHMM, I have help to uncover 

the role of R-loops at CpG promoters in the human genome and identified developmentally 

important partially methylated domain tracks in SH-SY5Y neuroblastoma cells and human placenta 

tissue. 

Tools Supported,HMM,Types

D
efineable,A

lphabet

A
m
biguous,Characters

Silent,states

D
iscrete,Em

ission

H
igher=order,Em

issions

Continuous,Em
ission

M
ultiple,Em

issions

Compilers
HMMoc traditional,*pair,*generalized ✓ ✓ ✓ ✓ ✓

HMMConverter traditional,*pair,*generalized ✓ ✓ ✓ ✓
Libraries

GHMM traditional,pair,*generalized ✓ ✓ ✓ ✓ ✓ ✓
HMMlib traditional ✓ ✓

StochHMM traditional ✓ ✓ ✓ ✓ ✓ ✓
Toolboxes

R=HMM traditional ✓ ✓ ✓
Matlab traditional ✓ ✓

Implementaion,Applications
MAMOT traditional ✓ ✓

StochHMM traditional ✓ ✓ ✓ ✓ ✓ ✓

Features

**no*dedicated*function*for*sampling*provided.*Ability*to*sample*from*posterior*is*stated*as*possible*with*further*implementation

Joint,Em
issions

Lexical,Transitions

,,Link,,Tools,to,
Em

ission/Transition

V
iterbi,D

ecoding

Posterior,D
ecoding

N
=Best,D

ecoding

Stochastic,Forw
ard

Stochastic,V
iterbi

W
eighted,Path

Explicit,Path

A
dd't,Language,Bindings Portability Dependencies

✓ ✓ ✓ * ✓ Linux,*Windows,*OS*X none
✓ ✓ Linux none

✓ ✓ Linux,*OS*X libxml2,*python
✓ ✓ Linux,*Windows,*OS*X Cmake,*Boost

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Linux,*Windows,*OS*X none

✓ * Linux,*Windows,*OS*X n/a
✓ ✓ Linux,*Windows,*OS*X n/a

✓ ✓ Linux,*Windows,*OS*X none
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Linux,*Windows,*OS*X none

Features

**no*dedicated*function*for*sampling*provided.*Ability*to*sample*from*posterior*is*stated*as*possible*with*further*implementation
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1.9 Overview of Chapters 

Chapter 2 contains a brief manuscript detailing StochHMM’s unique set of features and algorithms. 

The next four chapters describe collaborations where we developed HMMs using StochHMM to 

solve a unique set of problems. Chapter 3 and Chapter 4 represent a collaboration with Paul Ginno 

and Frédéric Chédin to predict and characterize R-Loops in the human genome. Chapter 5 and 

Chapter 6 are a collaboration with Diane Schroeder and Janine LaSalle to classify highly methylated 

domains (HMDs) and partially methylated domains (PMDs) in human IMR90 lung fibrobast cells, 

human SH-SY5Y neuroblastoma cells, and human placenta tissue. Chapter 7 provides a review of 

the work I have completed and future directions for StochHMM development and application to 

additional problems. 
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