
Programming Assignment #2:
Context Management and 3-way
Handshaking in TCP

Logistics
● The due date is 1pm on Tue, April 12th.

In Programming Assignment #1, you have installed KENS and learned to do basic socket
programming in C++ on top of KENS. On the client side, you have used the socket APIs in
the following order: socket() - bind() - connect() - send()/recv() - close(). On the server side,
socket() - bind() - listen() - accept() - send()/recv() - close().

From Chapter 3 in the textbook, you are learning what the transport layer does to provide
reliable delivery to the application layer. In this programming assignment, you will implement
the very basics of the transport layer; that is, not only use the socket APIs but implement
what goes on below the socket API.

Below is the key reference to the inner workings of TCP/IP. For detailed information on the
socket API, look up the corresponding manual pages.

[1] TCP/IP Illustrated, Volume 2, Gary R. Wright and W. Richard Stevens, 1995,
Addison-Wesley.

Brief Introduction to KENSv3

In most operating systems, the transport and lower layers are implemented in the kernel and
are very hard to modify. A bug in the kernel will incur a system panic and you will have to
reboot your system. Building and testing in userspace is far easier than in kernel, because
restarting a process is far easier than rebooting the entire OS: voila, KENS.

We have developed a network simulator called KENS (KAIST Educational Network System).
KENS is an event-driven network simulator that provides a virtual environment for students
to build and test TCP and IP stacks. KENS provides the application layer as well as the IP
and the layer below. Also included in KENS are reference binaries for the TCP and IP layers
so that students can test their own against.

The overall KENS architecture is in the figure below. You only implement specific APIs in the
given TCPAssignment.cpp file. You do not write your application code, IP layer code, nor the

counterpart (“adversary”). No need to even write main(). The only files you will modify in PA
#2 and PA #3 are: TCPAssignment.cpp and TCPAssignment.hpp.

A First Step to Build Your Own TCP
In PA #2 and PA #3 we are not building the complete TCP, but a bare minimum of the
protocol. Yet any reference describes TCP in full. In order to help you understand the
limited scope of PA #2, we will refer to the TCP implementation in [1] and present the scope
you should implement in PA #2.

First, the TCP layer interacts with the application layer above and the IP layer below and its
relationship is drawn in Figure 24.2 of [1].

In PA #2 you only need to implement only the following gray areas in KENS:

You will implement in TCPAssignment::initialize() all the code necessary to initialize
data structures you will later use in socket call processing.

In an operating system, when a user mode process invokes a system call, the CPU switches
to kernel mode and starts the execution of a kernel function. The execution is a jump to an
assembly language function called the system call handler. The user mode process passes
a parameter called the system call number for the kernel to identify the required system call
handler. KENS provides a simulation framework that mimics this user-kernel mode
switching. The system call handler in an operating system maps to a switch statement in the
systemCallback method. The system call number is param.syscallNumber in the code
below. We ask you to implement only the TCPAssignment::systemCallback not the
entire mode switching of the operating system.

void TCPAssignment::systemCallback(UUID syscallUUID, int pid, const

SystemCallParameter ¶m) {//}

UUID syscallUUID Unique identifier allocated for
every system call initiation

int pid process id

const SystemCallParameter ¶m system call parameter, including
the system call number. see
https://github.com/ANLAB-KAIST/KENS
v3/blob/master/include/E/Networking
/E_Host.hpp for details.

The TCPAssignment::systemCallback method does not have a return value. Those
system calls that may not return immediately, such as accept(), need to be blocked until
ready. You should store the corresponding UUID to return it later. For all system calls to
return a value, you must use a returnSystemCall method.

void TCPAssignment::systemCallback(UUID syscallUUID, int pid,

const SystemCallParameter ¶m)

{

this->returnSystemCall(syscallUUID, -ENOSYS);

// returns -ENOSYS (Function not implemented) from system call

`syscallUUID`

}

When a packet arrives from the IP layer to the TCP layer in KENS, the packet must be
processed in TCPAssignment::packetArrived:

https://github.com/ANLAB-KAIST/KENSv3/blob/master/include/E/Networking/E_Host.hpp
https://github.com/ANLAB-KAIST/KENSv3/blob/master/include/E/Networking/E_Host.hpp
https://github.com/ANLAB-KAIST/KENSv3/blob/master/include/E/Networking/E_Host.hpp

void TCPAssignment::packetArrived(std::string fromModule, Packet

&&packet) {

(void)from Module;

(void)packet;

}

The tcp_output module in Figure 24.2 [1] prepares actual packets from user data. It must fill
the header fields and payload. KENS provides methods to compute the checksum and
obtain the source IP address in the header. KENS even provides a utility function to convert
between integer arrays. Refer to the following link for further details.

● Figuring out the source IP address
● Networking Utilities

Once a packet is ready, the tcp_output module must call sendPacket(). You will find
details on sendPacket() in the following link.

● Sending and Receiving a Packet

Within TCPAssignment::packetArrived, TCPAssignment::systemCallback(), and
tcp_output, you will implement the following state transitions.

https://github.com/ANLAB-KAIST/KENSv3/wiki/Tip:-Figuring-out-the-source-IP-address-to-useRetrieving-Route-Information
https://github.com/ANLAB-KAIST/KENSv3/wiki/Tip:-Networking-Utilities
https://github.com/ANLAB-KAIST/KENSv3/wiki/Tip:-Sending-and-Receiving-a-Packet

Basics: socket(), open(), getsockname()

As you have programmed in PA #1, the POSIX APIs for socket() and bind() are as follows:

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

#include <sys/types.h> /* See NOTES */

#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

#include <sys/socket.h>

int getsockname(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

Corresponding APIs in KENS would be implemented in systemCallback:

void TCPAssignment::systemCallback(UUID syscallUUID, int pid,

const SystemCallParameter ¶m) {

switch (param.syscallNumber) {

case SOCKET:

// this->syscall_socket(syscallUUID, pid, param.param1_int,

// param.param2_int, param.param3_int);

break;

...

case BIND:

// this->syscall_bind(syscallUUID, pid, param.param1_int,

// static_cast<struct sockaddr *>(param.param2_ptr),

// (socklen_t) param.param3_int);

break;

...

case GETSOCKNAME:

// this->syscall_getsockname(syscallUUID, pid, param.param1_int,

// static_cast<struct sockaddr *>(param.param2_ptr),

// static_cast<socklen_t*>(param.param3_ptr));

break;

...

}

}

This assignment is to build the bare minimum of the transport layer, namely create data
structures, assign parameter values to the correct data structure fields, and return correct
values. The testing code will call those APIs and check to see the return values are correct.
It is not easy to check if the internals of your code are correct. They will be tested more
rigorously in PA #3. So we recommend you to take a look at the test code in PA #3 in
advance and design your data structures accordingly.

Socket Function

case SOCKET:

// this->syscall_socket(syscallUUID, pid, param.param1_int,

// param.param2_int, param.param3_int);

break;

The socket() call receives 3 parameters from the application layer. Now it should create a file
descriptor and store the domain and the protocol in the data structure indexed by the file
descriptor. It returns the file descriptor. More details about the socket call are described at:
https://linux.die.net/man/2/socket and https://linux.die.net/man/3/socket. In KENS, you need
to implement only domain AF_INET, type SOCK_STREAM, and protocol IPPROTO_TCP.

The testing code in .app/kens/testopen.cpp calls socket() many times and checks if the
return values are correct.

Bind Function

case BIND:

// this->syscall_bind(syscallUUID, pid, param.param1_int,

// static_cast<struct sockaddr *>(param.param2_ptr),

// (socklen_t) param.param3_int);

break;

The bind() call receives 3 parameters from the application layer. Now it should assign an
address to the socket. More details about the socket call are described
https://linux.die.net/man/2/bind and https://linux.die.net/man/3/bind .
In KENS, you need to implement only sockaddr_in type for sockaddr.

struct sockaddr_in {

sa_family_t sin_family; /* address family: AF_INET */

in_port_t sin_port; /* port in network byte order */

struct in_addr sin_addr; /* internet address */

};

https://linux.die.net/man/2/socket
https://linux.die.net/man/3/socket
https://linux.die.net/man/2/bind
https://linux.die.net/man/3/bind
https://linux.die.net/man/7/ip

/* Internet address. */

struct in_addr {

uint32_t s_addr; /* address in network byte order */

};

The only value you should assign to sin_family is AF_INET. The two fields, sin_port and
sin_addr, must follow the network byte order. The sin_addr field must be either an IP
address or INADDR_ANY. You should implement both cases.

When an IP address and a port number are bound to a socket, they should not overlap with
IP addresses and port numbers that are already bound to other sockets. The client side
does not call bind() – a random port number is assigned upon connect(). Examples are:

● 143.248.234.2:5555 and 143.248.234.3:5555 (IP addresses differ; OK)
● 143.248.234.2:5555 and 143.248.234.2:5556 (Port numbers differ; OK)
● 143.248.234.2:5555 and 0.0.0.0:5555 (0.0.0.0 in case of INADDR_ANY; not OK)
● No need to check against closed sockets

GetSockName Function

case GETSOCKNAME:

// this->syscall_getsockname(syscallUUID, pid, param.param1_int,

// static_cast<struct sockaddr *>(param.param2_ptr),

// static_cast<socklen_t*>(param.param3_ptr));

break;

The getsockname() call receives 3 parameters from the application layer. It should return the
current address to which the socket is bound. More details about the socket call are
described https://linux.die.net/man/2/getsockname and
https://linux.die.net/man/3/getsockname. As in the case of bind(), you need to implement
only the sockaddr_in type for sockaddr.

Every time you create a socket, you create a file descriptor and have to manage file
descriptors per process. KENS provides the file descriptor management methods in class
SystemCallInterface. The parameter processID to createFileDescriptor
specifies the process associated with the file descriptor. You can create a new file descriptor
using createFileDescriptor. This method allocates a new file descriptor in a
POSIX-compliant way and returns it. Also, you can remove a specific file descriptor using
removeFileDescriptor.

3-way Handshake

https://linux.die.net/man/2/getsockname
https://linux.die.net/man/3/getsockname
https://linux.die.net/man/7/ip
http://anlab-kaist.github.io/KENSv3/doc/class_e_1_1_system_call_interface.html
http://anlab-kaist.github.io/KENSv3/doc/class_e_1_1_system_call_interface.html
http://anlab-kaist.github.io/KENSv3/doc/class_e_1_1_system_call_interface.html
http://anlab-kaist.github.io/KENSv3/doc/class_e_1_1_system_call_interface.html
http://anlab-kaist.github.io/KENSv3/doc/class_e_1_1_system_call_interface.html

As we are yet to cover in the lectures, TCP connection setup is done via 3-way handshake.
When the client side initiates the connection setup by calling connect(),

Connect Function

case CONNECT:

// this->syscall_connect(syscallUUID, pid, param.param1_int,

// static_cast<struct sockaddr*>(param.param2_ptr),

// (socklen_t)param.param3_int);

break;

The connect() call receives 3 parameters from the application layer. It connects the file
descriptor to the address specified by addr. More details about the socket call are described
https://linux.die.net/man/2/connect and https://linux.die.net/man/3/connect.

Listen Function

case LISTEN:

// this->syscall_listen(syscallUUID, pid, param.param1_int,

// param.param2_int);

break;

The listen() call receives 2 parameters from the application layer. It marks the socket as a
passive socket, that is, as a socket that will be used to accept incoming connection requests
using accept. KENS requires you to implement the backlog parameter. It defines the
maximum length to which the queue of pending connections for sockfd may grow. More
details about the socket call are described https://linux.die.net/man/2/listen and
https://linux.die.net/man/3/listen.

Accept Function

case ACCEPT:

// this->syscall_accept(syscallUUID, pid, param.param1_int,

// static_cast<struct sockaddr*>(param.param2_ptr),

// static_cast<socklen_t*>(param.param3_ptr));

break;

The accept() call receives 3 parameters from the application layer. It extracts the first
connection on the queue of pending connections. It creates and returns a new file descriptor

https://linux.die.net/man/2/connect
https://linux.die.net/man/3/connect
https://linux.die.net/man/2/listen
https://linux.die.net/man/3/listen

for the connection. It also fills the address parameter with connecting client’s information.
More details about the socket call are described https://linux.die.net/man/2/accept and
https://linux.die.net/man/3/accept .

Close Function

case CLOSE:

// this->syscall_close(syscallUUID, pid, param.param1_int);

break;

The close() call receives a parameter from the application layer. It closes the file descriptor’s
connection and deallocates the file descriptor. More details about the socket call are
described https://linux.die.net/man/2/close and https://linux.die.net/man/3/close.

Using connect() or close(), you need a timer in order not to wait indefinitely. Check out the
following link to use timers.

● Using Timer

More Resources
https://github.com/ANLAB-KAIST/KENSv3/wiki/Misc:-External-Resources

Submission
The test code is in the following files. Your code will be graded according to the test results
from them (only reliable test cases).

● ./app/kens/testopen.cpp (test-kens-open)
● ./app/kens/testbind.cpp (test-kens-bind)
● ./app/kens/testhandshake.cpp (test-kens-handshake)
● ./app/kens/testclose.cpp (test-kens-close)

You should submit only three files: readme.txt, TCPAssignment.cpp,
TCPAssignment.hpp. TCPAssignment.cpp and TCPAssignment.hpp should contain your
implementation. Upload the files on KLMS. There is no designated template for readme.txt;
just briefly explain what you have implemented and how you have progressed to complete
this assignment. It does not have to be long and detailed. A brief summary will suffice.

https://linux.die.net/man/2/accept
https://linux.die.net/man/3/accept
https://linux.die.net/man/2/close
https://linux.die.net/man/3/close
https://github.com/ANLAB-KAIST/KENSv3/wiki/Tip:-Using-a-Timerki/Tip:-Using-Timer
https://github.com/ANLAB-KAIST/KENSv3/wiki/Misc:-External-Resources

