
Programming Assignment #1:
Basic Socket Programming

Logistics
● The due date is 11:59pm on Tue, Mar. 29th.
● Submit EchoAssignment.cpp via KLMS per team.
● Discussion and Q&A: https://github.com/ANLAB-KAIST/KENSv3/discussions

Overview
In PA #1 you will implement a variant of a simple echo server and a client. An echo server

uses TCP via POSIX network sockets to receive and handle requests from its clients. Clients
issue requests to servers and receive their responses. The purpose of this project is to learn
how to use the POSIX network socket and to set up KENS for later assignments.

POSIX Socket Programming
The Linux socket networking layer provides BSD socket functions, and they are the user

interface between the user process and the network protocol stacks in the kernel. The BSD
socket functions contain socket(), bind(), listen(), accept(), connect(), read(), write(),
getsockname(), getpeername(), and close(). In this project you learn to use these functions
and in later projects learn to actually implement them. The figure below shows the overall
control flow of the socket functions.

socket()
It creates a new socket and returns its socket descriptor.

bind()
It associates a socket with a local port number and an
IP address.

listen()
It prepares a socket for incoming connections.

accept()
It accepts a received incoming attempt from a client. It
creates a new socket associated with a new TCP
connection.

connect(sockfd, addr, addrlen)

https://github.com/ANLAB-KAIST/KENSv3/discussions

It binds the address specified by addr to the socket referred to by the file descriptor sockfd.

read() / write()
These functions are used for data transfer using a socket.

getsockname()
It returns the current address to which a socket is bound.

getpeername()
It returns the address of the peer connected to a socket.

close()
It closes the connection.

You should refer to the Linux manual pages for the detailed instructions on the socket
functions:
https://github.com/ANLAB-KAIST/KENSv3/wiki/Misc:-External-Resources#linux-manuals .

Getting Started
To set up KENS, please follow instructions in the following link:
https://github.com/ANLAB-KAIST/KENSv3/wiki .

Simple Echo Server
Update #1: please use socket(AF_INET, SOCK_STREAM, IPPROTO_TCP) for KENS.
The other parameters would not work.
Update #2: For your convenience, you may want to use inet_addr or inet_ntop.

An echo server is a very simple application that receives a request and sends back the
request as is. In PA#1, you will implement a variant of the simple echo application. Instead of
simply sending back what it received, the server will process three requests differently and
compose replies that are not the same as the request. Below is the description.

1. The server application accepts a new connection: accept().
2. It receives a request terminated by a new line character (\n).
3. The server responds differently depending on the request.

a. if request := hello\n,response := server-hello($)server-hello
variable in the skeleton code))\n

b. if request := whoami\n, response := client’s IP address\n
c. if request := whoru\n, response := server’s IP address\n

https://github.com/ANLAB-KAIST/KENSv3/wiki/Misc:-External-Resources#linux-manuals
https://github.com/ANLAB-KAIST/KENSv3/wiki
https://man7.org/linux/man-pages/man3/inet.3.html
https://man7.org/linux/man-pages/man3/inet_ntop.3.html

d. for all other requests, the response is identical to the request.
4. All responses must terminate with a new line character (\n).
5. Server logs (or submits) requests via submitAnswer method.

a. For all requests, the server must call the submitAnswer method with a
client's IP address and the request’s data.

b. e.g.) submitAnswer(client_ip, content);
c. Note that both IP and data must be null terminated C strings (\0) not new line

terminated strings (\n).

Skeleton Code

All of your server source code must lie in the serverMain method (see comments in the
skeleton code). The first and second parameters are used for the listen() call. The third
parameter (const char *server_hello) is used for server-hello messages.

int EchoAssignment::serverMain(const char *bind_ip, int port,

const char *server_hello) {

// Your server code

// !IMPORTANT: do not use global variables and do not define/use

functions

return 0;

}

Client
You will also implement a simple client application for the echo server. It connects to the

server and sends a request. It also uses the submitAnswer method to log the server’s
responses. The client’s control flow is as below.

1. A client connects to an echo server: use connect()
2. Client sends a request to the server.
3. Client receives a response from the server.
4. Client logs (or submits) the response via submitAnswer method.

a. For all the responses, the client must call the submitAnswer method with a
server’s IP address and the reponse’s data.

b. See the server’s instructions for more detail about the submitAnswer
method.

Skeleton Code

All of your client source code must lie in the clientMain method (see comments in the
skeleton code). The first and second parameters are used for the connect() call. The third
parameter (const char *command) is sent to the echo server.

int EchoAssignment::clientMain(const char *server_ip, int port,

const char *command) {

// Your client code

// !IMPORTANT: do not use global variables and do not define/use

functions

return 0;

}

Build
Build instructions are described in the Getting Started pages:
https://github.com/ANLAB-KAIST/KENSv3/wiki .

After build completes, two binaries are produced in build/app/echo/ directory: echo and
echo-non-kens.

Test
To run test cases, executes the echo binary. We will use this result for grading. The
echo-non-kens is your echo server and client application without KENS. You can use this
binary for testing with a real environment (we will not use this binary for grading).

Example Test Output:

[==========] Running 9 tests from 1 test suite.
[----------] Global test environment set-up.
[----------] 9 tests from EchoTesting
[RUN] EchoTesting.SingleEcho
[OK] EchoTesting.SingleEcho (12 ms)
[RUN] EchoTesting.SingleWhoRU
[OK] EchoTesting.SingleWhoRU (6 ms)
[RUN] EchoTesting.SingleWhoAmI
[OK] EchoTesting.SingleWhoAmI (6 ms)
[RUN] EchoTesting.SingleHello
[OK] EchoTesting.SingleHello (6 ms)

https://github.com/ANLAB-KAIST/KENSv3/wiki

[RUN] EchoTesting.OnetoManyEcho
[OK] EchoTesting.OnetoManyEcho (134 ms)
[RUN] EchoTesting.OnetoManyWhoRU
[OK] EchoTesting.OnetoManyWhoRU (103 ms)
[RUN] EchoTesting.OnetoManyWhoAmI
[OK] EchoTesting.OnetoManyWhoAmI (94 ms)
[RUN] EchoTesting.OnetoManyHello
[OK] EchoTesting.OnetoManyHello (93 ms)
[RUN] EchoTesting.OnetoManyAll
[OK] EchoTesting.OnetoManyAll (448 ms)
[----------] 9 tests from EchoTesting (902 ms total)

[----------] Global test environment tear-down
[==========] 9 tests from 1 test suite ran. (903 ms total)
[PASSED] 9 tests.

Usage of echo-non-kens:

Usage: ./echo-non-kens <mode> <ip-address> <port-number>
<command/server-hello>
Modes:

c: client
s: server

Client commands:
hello : server returns <server-hello>
whoami: server returns <client-ip>
whoru : server returns <server-ip>
others: server echos

Note: each command is terminated by newline character (\n)
Examples:

server: ./echo-non-kens s 0.0.0.0 9000 hello-client
client: ./echo-non-kens c 127.0.0.1 9000 whoami

