
Programming Assignment #3:
Reliable Data Transfer
Logistics

● PA discussion needs to be done similar to PA#2 (See KLMS notice for details).
○ Submit 3 questions by 2021.04.15. 10:30 AM, KST (Thursday)
○ Write answers by 2021.04.18. 10:30 AM, KST (Sunday)
○ Write feedbacks by 2021.04.20. 10:30 AM, KST (Tuesday)
○ For who should write answers and feedbacks for whom, go to KLMS

● Due of PA #3: 2021.05.04. 10:30 AM, KST

Overview
We learned in Chapter 3 that TCP has the following four key features:

1) segment structure
2) reliable data transfer
3) flow control
4) connection management

In PA #2, you have already dealt with 1) segment structure and 4) connection management:
implemented necessary data structures to handle TCP segments and 3-way handshake. You
have implemented connection establishment and teardown mechanisms of TCP in PA #2. In
PA #3, you will implement 2) reliable data transfer and 3) flow control, first over a reliable
channel and then over an unreliable channel (KENSv3 Part 3). The testing script is in
testtransfer.cpp.

Note: You will not implement congestion control. That is, you will not use the congestion
window size in your implementation. In this assignment, the sender-side window size (i.e.,
the maximum allowed number of bytes which are sent but unacked) is simply set to the
advertised rwnd.

3-1. Reliable Data Transfer over Reliable Channel
The main task of this assignment is to implement read() and write() in KENSv3, assuming
that the underlying channel is reliable (i.e., there is no bit corruption nor packet loss).

case READ:

// this->syscall_read(syscallUUID, pid, param.param1_int,

param.param2_ptr,

// param.param3_int);

break;

https://klms.kaist.ac.kr/mod/courseboard/article.php?id=491360&bwid=230717
https://github.com/ANLAB-KAIST/KENSv3/blob/master/app/kens/testtransfer.cpp

The read() call receives three parameters from the application layer: a socket (file)
descriptor, a pointer to application’s read buffer, and the number of bytes to read from the
socket. It should return the number of bytes read. More details about the read() call is
described here: https://man7.org/linux/man-pages/man2/read.2.html

case WRITE:

// this->syscall_write(syscallUUID, pid, param.param1_int,

param.param2_ptr,

// param.param3_int);

break;

The write() call receives three parameters from the application layer: a socket (file)
descriptor, a pointer to application’s data to write, the number of bytes to write to the socket.
It should return the number of bytes written. More details about the write() call is described
here: https://man7.org/linux/man-pages/man2/write.2.html

When an application calls read(), the TCP layer is in one of the following two situations:
(1) If there is already received data in the corresponding TCP socket’s receive buffer, the

data is copied to the application’s buffer and the call returns immediately.
(2) If there is no received data, the call blocks until any data is received from the sender.

When data arrives, the data is copied to the application’s buffer and the call returns.

When an application calls write(), the TCP layer is in one of the following two situations:

1) If there is enough space in the corresponding TCP socket’s send buffer for the data,
the data is copied to the send buffer. Then,

a) if the data is sendable (i.e., the data lies in the sender’s window, send the
data and the call returns.

b) if the data is not sendable (i.e., the data lies outside the sender’s window), the
call just returns.

2) If there is not enough space, the call blocks until the TCP layer receives ACK(s) and
releases sufficient space for the data. When sufficient space for the given (from
application) data becomes available, the data is copied to the send buffer and then,

a) if the data is sendable (i.e., the data lies in the sender-side window), send the
data and the call returns.

b) if the data is not sendable (i.e., the data lies outside the sender-side window),
the call just returns.

When a data packet arrives (to the TCP layer), you should:
● copy the payload to the corresponding TCP socket’s receive buffer
● acknowledge received packet (i.e., send an ACK packet)

When an ACK packet arrives (to the TCP layer), you should:
● free the send buffer space allocated for acked data
● move the sender window (the number of in-flight bytes should be decreased)
● adjust the sender window size (from advertised receive buffer size)

https://man7.org/linux/man-pages/man2/read.2.html
https://man7.org/linux/man-pages/man2/write.2.html

● send data if there is waiting data in the send buffer and if the data is sendable (i.e.,
there is room in sender’s window)

For the sake of convenience, set the MTU size to 1500. In TCP, it translates to MSS of
1460.

Note: Above description is based on the assumption that you allocate and use fixed-length
send buffer and receive buffer for each socket. You may use packet queues or dynamically
allocated memory. These implementation details are up to you.

3-2. Reliable Data Transfer over Unreliable Channel
Now you have to extend your implementation of read() and write() to work correctly,
assuming that the underlying channel is unreliable (i.e., bit corruption or packet loss
may occur).
You will encounter the same test cases as in 3-1. However, the KENSv3 framework will
randomly drop or corrupt some packets. Use unreliable versions of binaries (e.g.
kens-part3-unreliable) to test over unreliable channels. You have to pass unreliable
versions of part 1, 2, and 3 to get full credit for PA #3.

What should you do more when the channel becomes unreliable?

In order to address bit corruption, you have to validate the checksum at the receiver. If a
received packet is corrupted, simply discard (drop) it. KENSv3 provides a utility function that
computes checksum. Take a look at
https://github.com/ANLAB-KAIST/KENSv3/wiki/Tip:-Networking-Utilities

In order to address packet loss, you have to run timers and implement retransmission at the
sender. In computation of RTT, you need the system clock. Call System::getCurrentTime()
and get the current KENS system clock time.

For timers, use the following RTT estimation:
EstimatedRTT = (1 - 𝛂)*EstimatedRTT + 𝛂*SampleRTT

DevRTT = (1 - 𝛃)*DevRTT + 𝛃*∣SampleRTT - EstimatedRTT∣
TimeoutInterval = EstimatedRTT + 4*DevRTT

𝛂 = 0.125, 𝛃= 0.25
If an expected ACK packet does not arrive on time (i.e., the timer expires) at the sender, you
should retransmit the corresponding data packet (whose timer is expired).

Note that the sender should remember every sent packet for the case of retransmission.
Also, the receiver should be aware of (possible) duplicate packets (i.e., the same packets
may arrive more than once). Therefore, the receiver should be able to determine which
packet to ignore and not.

https://github.com/ANLAB-KAIST/KENSv3/wiki/Tip:-Networking-Utilities
https://github.com/ANLAB-KAIST/KENSv3/blob/master/src/E/E_System.cpp

More Resources
https://github.com/ANLAB-KAIST/KENSv3/wiki/Misc:-External-Resources

Submission
● You should submit only three files: readme.txt, TCPAssignment.cpp,

TCPAssignment.hpp. TCPAssignment.cpp and TCPAssignment.hpp should contain
your implementation.

● Upload the files on KLMS.
● There is no designated template for readme.txt; just briefly describe how you have

progressed to complete this assignment. It does not have to be long and detailed. A
brief summary will suffice.

● If you wish to use token(s) for this assignment, please state clearly the number of
tokens to use for each member in readme.txt.

https://github.com/ANLAB-KAIST/KENSv3/wiki/Misc:-External-Resources

