Programming Assignment #2:
Basics of KENSv3

Logistics
e The due date is 10:30am on Thu, Oct. 14th.

In Programming Assignment #1, you have learned to do basic socket programming in C++
over KENS.

From Chapter 3 in the textbook, you are learning what the transport layer does to provide
reliable delivery to the application layer. In this programming assignment, you will implement
the very basics of the transport layer; that is, not only use the socket APIs but implement
what goes on below the socket API.

Below is the key reference to the inner workings of TCP/IP. For detailed information on the
socket API, look up the corresponding manual pages.

[1] TCP/IP lllustrated, Volume 2, Gary R. Wright and W. Richard Stevens, 1995,
Addison-Wesley.

Introduction to KENSv3

In most operating systems, the transport and lower layers are implemented in the kernel and
are very hard to modify. A bug in the kernel will incur a system panic and you will have to
rebook your system. Building and testing in userspace is far easier than in kernel, because
restarting a process is far easier than rebooting the entire OS: voila, KENS.

We have developed a simulation environment called KENS (KAIST Educational Network
System) so that you can build and test basic functions of the transport layer not in the kernel
but in userspace. We will use KENSv3.

Let’s first start installing KENSv3 on your platform. Go to
https://github.com/ANLAB-KAIST/KENSv3/wiki and follow the link to “Getting Started” for
your own system. Check the system requirements and compilers that are supported.

KENSvV3 is an event-driven network simulator that provides a virtual environment for
students to build and test TCP and IP stacks. KENS provides the application layer as well
as the IP and the layer below. Also included in KENS are reference binaries for the TCP and
IP layers so that students can test their own against.

https://github.com/ANLAB-KAIST/KENSv3/wiki

The overall KENS architecture is in the figure below. You only implement specific APIs in the
given TCPAssignment.cpp file. You do not write your application code, IP layer code, nor the
counterpart (“adversary”). No need to even write main(). The build process differs from
platform to platform. The only files you will modify are: TCPAssignment.cpp and
TCPAssignment.hpp.

| |
‘ System Call Event ‘ System Call Event
| * Student’s TCP Driver | V A:jversary,TCP Driver %
A Packet Event A Packet Event
| ;tudent’s IP Driver | V Aav:rsary'IP Driver A
‘ Packet Event A Packet Event
v v
| KENS Virtual Host | KENS Virtual Host
: : Network Events : Network Events
| KENS Event Generator |

A First Step to Build Your Own TCP

In PA#2 and PA #3 we are not building the complete TCP, but a bare minimum of the
protocol. Yet any reference describes TCP in full. In order to help you understand the
limited scope of PA #2, we will refer to the TCP implementation in [1] and present the scope
you should implement in PA #2.

First, the TCP layer interacts with the application layer above and the IP layer below and its
relationship is drawn in Figure 24.2 of [1].

Figure 24.2. Relationship of TCP functions to rest of the kernel,

VATHOUS
R i receive buifer syshem calls
vabem imikialization
L] .
El aET
—
T ¥ ¥
i ut)
i L
T
=OPWane inbermapt
every | A6 ms cvery | S ms kernel out | of mbuls

L L L

In PA #2 you only need to implement only the following in KENS:

System |Initialization Receive System calls

main application application

F

4

domaininit user reguest
(systemCallBack)

r

tep_init tep_input
(TCP:initialize) (PacketArrived) tcp_output

IP layer IP layer

The corresponding part in KENS to tcp_input is:

void TCPAssignment::packetArrived(std::string fromModule, Packet
&8&packet) {

(void)from Module;

(void)packet;
}

The corresponding part in KENS to user_request is:

void TCPAssignment::systemCallback(UUID syscallUUID, int pid, const
SystemCallParameter ¶m) {//}

Within TCPAssignment::packetArrived() and TCPAssignment::systemCallback(), you will
implement the following state transition diagram.

Figure 24.15. TCP state transition diagram.

Sty poi

[CLOSED }
i e i
L]
]
]
i

appl passive apen
sl <nothing > :
i

it - -
semd: | BST ﬂ}_ LA LISTEN
IS psive
‘J""fl -
ﬁ'-f o
o o
\.’ﬁ‘f 5 __zt;/fé\
-
iy . .
[SN RCVD et stk ol e S appl: close
LS m A send: SYM, ACK s A or imeout
M sinndlameons epen dekar opem
kY
et
5
%\\ & =
appt | close ‘F L =
- Tk) % 34
sort |E [.:‘I.tl-!t "-‘"”"-'“a';fv.""}“*"'-“'"*";
hatd Enrusfer staly ! :
N 1
; .appl.:t!mr
I . : E = 1
i FIN simultencoss dlose | i ACK
Wi iy ey PR P e Lk . (25
1\ FN_WAIT I_,' =md: ACE - i I‘l*f'l”[') T I--’h""_-‘\{ﬂ};ﬂa:—t;ﬂ}r*
i, " pde e
v JACK "\%‘?fl recw: | ACK 1
send: | <nothing > %:\1'(} semdl: | <mothing=,
T \ '
NN : |
(AN WAIT 2 f——rry ! TIME WAIT et

EMSL timeost
actfne ofose

e stormrll drarssitanrs for el
=== dorEll irdREs S O STET

appl: slade Pransitiones taken wdien application sswes operafion
Lo shair Pramsitions faken sden segment recerond
semd: sl fs sewl for tais dmaresition

Basics: socket(), open(), getsockname()

As you have programmed in PA #1, the POSIX APIs for socket() and bind() are as follows:

#include <sys/socket.h>
int socket(int domain, int type, int protocol);

#include <sys/types.h> /* See NOTES */

#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *addr,
socklen t addrlen);

#include <sys/socket.h>
int getsockname(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

Corresponding APIs in KENS would be implemented in systemCallback:

void TCPAssignment::systemCallback(UUID syscallUUID, int pid,
const SystemCallParameter ¶m) {

switch (param.syscallNumber) {

case SOCKET:
// this->syscall_socket(syscal lUUID, pid, param.paraml_int,
// param.param2_1int, param.param3_int);

break;
case BIND:
// this->syscall_bind(syscallUUID, pid, param.paraml_int,
// static_cast<struct sockaddr *>(param.param2_ptr),
// (socklen_t) param.param3_int);
break;

case GETSOCKNAME:
// this->syscall_getsockname(syscal lLUUID, pid, param.paraml_int,

// static_cast<struct sockaddr *>(param.param2_ptr),
// static_cast<socklen_t*>(param.param3_ptr));
break;

This assignment is to build the bare minimum of the transport layer, namely create data
structures, assign parameter values to the correct data structure fields, and return correct
values. The testing code will call those APIls and check to see the return values are correct.
It is not easy to check if the internals of your code are correct. They will be tested more
rigorously in PA#3. So we recommend you to take a look at the test code in PA#3 in
advance and design your data structures accordingly.

In PA#1 you have used the socket API. In PA#2 and PA#3, you build your own TCP layer
below the socket API. You will implement the functions listed above. The skeletal code is in

TCPAssignment.cpp.

The goal here is to implement the following parts in TCPAssignment.cpp and run
testopen.cpp and testbind.cpp successfully.

Socket Function

case SOCKET:
// this->syscall_socket(syscal lLUUID, pid, param.paraml_int,
// param.param2_1int, param.param3_int);
break;

The socket() call receives 3 parameters from the application layer. Now it should create a file
descriptor and store the domain and the protocol in the data structure indexed by the file
descriptor. It returns the file descriptor. More details about the socket call are described at:
https://linux.die.net/man/2/socket and https://linux.die.net/man/3/socket. In KENS, you need
to implement only domain AF_INET, type SOCK_STREAM, and protocol IPPROTO_TCP.

The testing code in testopen.cpp calls socket() many times and checks if the return values
are correct.

Bind Function

case BIND:
// this->syscall_bind(syscallUUID, pid, param.paraml_int,
// static_cast<struct sockaddr *>(param.param2_ptr),
// (socklen_t) param.param3_int);
break;

The bind() call receives 3 parameters from the application layer. Now it should assign an
address to the socket. More details about the socket call are described
https://linux.die.net/man/2/bind and https://linux.die.net/man/3/bind .

In KENS, you need to implement only sockaddr_in type for sockaddr.

https://github.com/ANLAB-KAIST/KENSv3/blob/master/app/kens/TCPAssignment.cpp
https://linux.die.net/man/2/socket
https://linux.die.net/man/3/socket
https://linux.die.net/man/2/bind
https://linux.die.net/man/3/bind
https://linux.die.net/man/7/ip

struct sockaddr_in {
sa_family t sin_family; /* address family: AF_INET */
in_port_t sin_port; /* port in network byte order */
struct in_addr sin_addr; /* internet address */

};

/* Internet address. */
struct in_addr {
uint32_t s_addr; /* address in network byte order */

};

The only value you should assign to sin_family is AF_INET. The two fields, sin_port and
sin_addr, must follow the network byte order. The sin_addr field must be either an IP
address or INADDR_ANY. You should implement both cases.

GetSockName Function

case GETSOCKNAME:
// this->syscall_getsockname(syscal lUUID, pid, param.paraml_int,

// static _cast<struct sockaddr *>(param.param2_ptr),
// static_cast<socklen_t*>(param.param3_ptr));
break;

The getsockname() call receives 3 parameters from the application layer. It should return the
current address to which the socket is bound. More details about the socket call are
described https://linux.die.net/man/2/getsockname and
https://linux.die.net/man/3/getsockname. As in the case of bind(), you need to implement
only the sockaddr_in type for sockaddr.

Tips

e Managing File Descriptors
e Returning a System Call

3-way Handshake

As we have covered in the lectures, TCP connection setup is done via 3-way handshake.
When the client side initiates the connection setup by calling connect(),

https://linux.die.net/man/2/getsockname
https://linux.die.net/man/3/getsockname
https://linux.die.net/man/7/ip
https://github.com/ANLAB-KAIST/KENSv3/wiki/Tip:-Managing-File-Descriptors
https://github.com/ANLAB-KAIST/KENSv3/wiki/Tip:-Returning-a-System-Call

Connect Function

case CONNECT:
// this->syscall_ connect(syscal lUUID, pid, param.paraml_int,

// static_cast<struct sockaddr*>(param.param2_ptr),
// (socklen_t)param.param3_int);
break;

The connect() call receives 3 parameters from the application layer. It connects the file
descriptor to the address specified by addr. More details about the socket call are described

https://linux.die.net/man/2/connect and https://linux.die.net/man/3/connect.

Listen Function

case LISTEN:
// this->syscall_Llisten(syscallUUID, pid, param.paraml_int,
// param.param2_int);
break;

The listen() call receives 2 parameters from the application layer. It marks the socket as a
passive socket, that is, as a socket that will be used to accept incoming connection requests
using accept. KENS requires you to implement the backlog parameter. It defines the
maximum length to which the queue of pending connections for sockfd may grow. More
details about the socket call are described https:/linux.die.net/man/2/listen and
https://linux.die.net/man/3/listen.

Accept Function

case ACCEPT:
// this->syscall accept(syscallUUID, pid, param.paraml_int,

// static_cast<struct sockaddr*>(param.param2_ptr),
// static_cast<socklen_t*>(param.param3_ptr));
break;

The accept() call receives 3 parameters from the application layer. It extracts the first
connection on the queue of pending connections. It creates and returns a new file descriptor
for the connection. It also fills the address parameter with connecting client’s information.
More details about the socket call are described https://linux.die.net/man/2/accept and
https://linux.die.net/man

https://linux.die.net/man/2/connect
https://linux.die.net/man/3/connect
https://linux.die.net/man/2/listen
https://linux.die.net/man/3/listen
https://linux.die.net/man/2/accept
https://linux.die.net/man/3/accept

Close Function

case CLOSE:
// this->syscall close(syscallUUID, pid, param.paraml_int);
break;

The close() call receives a parameter from the application layer. It closes the file descriptor’s
connection and deallocates the file descriptor. More details about the socket call are
described https://linux.die.net/man/2/close and https://linux.die.net/man/3/close.

Sending and Receiving a Packet
Retrieving Route Information
Using Timer

Networking Utilities

More Resources
https://aithub.com/ANLAB-KAIST/KENSv3/wiki/Misc:-External-R r

Submission

You should submit only three files: readme.txt, TCPAssignment.cpp,
TCPAssignment.hpp. TCPAssignment.cpp and TCPAssignment.hpp should contain your
implementation. Upload the files on KLMS. There is no designated template for readme.txt;
just briefly explain what you have implemented and how you have progressed to complete
this assignment. It does not have to be long and detailed. A brief summary will suffice.

https://linux.die.net/man/2/close
https://linux.die.net/man/3/close
https://github.com/ANLAB-KAIST/KENSv3/wiki/Tip:-Sending-and-Receiving-a-Packet
https://github.com/ANLAB-KAIST/KENSv3/wiki/Tip:-Retrieving-Route-Information
https://github.com/ANLAB-KAIST/KENSv3/wiki/Tip:-Using-Timer
https://github.com/ANLAB-KAIST/KENSv3/wiki/Tip:-Networking-Utilities
https://github.com/ANLAB-KAIST/KENSv3/wiki/Misc:-External-Resources

