

VE-RSPM Training Workshop

March 13th and 14th, 2019

Training staff

OSA – Brian Gregor
 RSG – Ben Stabler
 Jacobs – Brooke Jordan (coordination)

<u>Attendees</u>

- ODOT Eugene/LCOG Albany/AAMPO WSDOT Atlanta/ARC Philadelphia/DVRPC
- VE Pooled fund (FHWA/Volpe) Consultants (WSP/Cambridge Systematics, RSG)

Time	Item	Lead
8:00	Welcome and Introductions	Tara Weidner, ODOT
8:10	VE-RSPM Design Considerations	Brian Gregor, OSA
8:40	Using the Tool	Ben Stabler, RSG
9:05	Review VESimHouseholds	Brian Gregor, OSA
10:10	Review VELandUse	Brian Gregor, OSA
10:55	Review VETransportSupply	Brian Gregor, OSA
11:45	Next Steps and Adjourn	Tara Weidner, ODOT

VisionEval Training Overview

OregonDOT-hosted training for the <u>VisionEval Strategic</u> <u>Planning Models</u>.

Training objectives:

- Educate for early applications of metropolitan (VE-RSPM) & statewide (VE-State) models.
- Summarize at a high-level the main model components (packages) and key concepts to assist in developing model inputs and evaluating outputs.
- Supplement Github resources.
- <u>NOT</u> hands-on installation/running of the model.

VE-RSPM Design Considerations

Brian Gregor, Oregon System Analytics

Support strategic modeling

- Broad scope
- Fast run many scenarios
- Modular
 - Share components between models
 - Can be modified and extended
- Open science approach
 - Reproducible data and source code included
 - Open source licensing
- Customizable
- Built-in error checking
 - Detailed specifications for all data
 - Check model and user inputs prior to running model

Basic Structure of Model System

- Modules are building blocks of models, e.g.:
 - Predict number of drivers in household
 - Predict number of vehicles owned by household
- Modules are contained in R packages
 - A package groups together related modules, e.g.:
 - VESimHouseholds package has modules which create simulated households and their characteristics
- Models like VE-RSPM are composed of
 - A script that identifies the order of execution of modules
 - A set of input files
 - Several model definition files
- Model data is saved in a central datastore

- VisionEval is implemented entirely in the R programming language
- R is a premier language for data science
- Multi-OS (Windows, Apple, Linux)
- Packages are structured containers for code and data
 - Hierarchical set of folders having defined structures
 - Several required files
 - Standard approach for organizing code, data, documentation

Implementation Using R Language

Key Terms:

- Source Package
 - Contains source code (i.e. human readable)
 - Can modify the source package to customize modules
 - Is built (installed) before it can be used
 - Example
- Installed Package
 - Building a package runs the source code and saves data and functions
 - Includes documentation of the data and functions
 - Is ready to be used in programs
 - Example

Module Documentation

- Standard module documentation describes
 - Model estimation
 - How the module works
 - Module inputs
 - Data the module uses
 - Data the module produces
- Demo of module documentation
 - Where to find
 - How to read
 - Index to module documentation on Wiki

- **Region**: the model area such as metropolitan area or state
- Azone: large-scale zones such as cities, counties, or PUMAS
- **Bzones**: divisions of Azones representing neighborhoods (census block groups) can be synthesized
- Marea: groups of Azones that are associated with a common urbanized area
- Location Type: not a geography but identifies whether households are urban/town/rural
- Place Type: not a geography but defines the level of urbanization (area type) and mixing of jobs and housing (development type)

VE-RSPM & VE-State Overview

VE-RSPM Packages & Modules

CreateHouseholds PredictWorkers AssignLifeCycle PredictIncome	VESimHouseholds Package	CalculateHouseholdDvmt CalculateAltModeTrips CalculateVehicleTrips DivertSovTravel
PredictHousing LocateEmployment AssignLocTypes	VELandUse Package	CalculateCarbonIntensity VEPowertrainsAndFuels AssignHhVehiclePowertrain Package
Calculate4DMeasures CalculateUrbanMixMeasure AssignParkingRestrictions AssignDemandManagemen AssignCarSvcAvailability	t	Iterate X Times VETravelPerformance CalculateRoadDvmt Package CalculateRoadPerformance CalculateMpgMpkwhAdjustments AdjustHhVehicleMpgMpkwh Operation Quest
AssignTransitService AssignRoadMiles	VETransportSupply Package	End Iteration CalculateComEnergyAndEmissions
AssignDrivers AssignVehicleOwnership AssignVehicleType AssignVehicleTable AssignVehicleAge CalculateVehicleOwnCost AdjustVehicleOwnership	VEHouseholdVehicles Package	CalculatePtranEnergyAndEmissions

VE-State Packages & Modules

CreateHouseholds PredictWorkers AssignLifeCycle PredictIncome	VESimHouseholds Package	CalculateHouseholdDvmt CalculateAltModeTrips CalculateVehicleTrips DivertSovTravel
CreateSimBzones SimulateHousing SimulateEmployment	VESimLandUse Package	CalculateCarbonIntensity VEPowertrainsAndFuels AssignHhVehiclePowertrain Package
Simulate4DMeasures SimulateUrbanMixMeasure AssignParkingRestrictions AssignDemandManagemen AssignCarSvcAvailability	t	Iterate X Times VETravelPerformance CalculateRoadDvmt Package CalculateRoadPerformance CalculateMpgMpkwhAdjustments AdjustHhVehicleMpgMpkwh CalculateVehicleOperatingCost
SimulateTransitService SimulateRoadMiles	ESimTransportSupply Package	BudgetHouseholdDvmt BalanceRoadCostsAndRevenues
AssignDrivers AssignVehicleOwnership AssignVehicleType AssignVehicleTable AssignVehicleAge CalculateVehicleOwnCost AdjustVehicleOwnership	VEHouseholdVehicles Package	CalculateComEnergyAndEmissions CalculatePtranEnergyAndEmissions

Basic Model Setup

- Models like VE-RSPM are composed of:
 - A model run script which initializes the model and identifies the order of execution of modules
 - A set of input files
 - Several model definition files
- Model run script is readable even if you are not a programmer
 - Example

- run_parameters.json defines parameters that control the model run *example*
- model_parameters.json defines global model parameters (e.g. value of time) - *example*
- geo.csv defines Azones, Bzones, Mareas and their relationships *example*
- **units.csv** defines units for storing standard data types in the data store *example*
- deflators.csv defines deflators used for converting money inputs (e.g. fuel price) for current and past years to base year values - *example*

- All input files are csv-formatted text files
- Names of files identify the data geography
- Files have headers identifying dataset names. Also:
 - Must have **Year** field when inputs vary by model year
 - Must have **Geo** field when inputs vary by geography
- Field names can have modifiers
 - Year that money values are denominated in (e.g. 2010)
 - Magnitude multiplier for large numbers (e.g. 1e3)
- Things to watch out for
 - Need values for every combination of year and geography
 - Column names must exactly match specifications
 - No data for years other than model run years
 - No data for areas other than those defined in geo.csv file

Using the Tool

Ben Stabler, RSG

y 😳 🔉 👰

Х

✓ Download · VisionEval

 \rightarrow

CA

VisionEval

× +

https://visioneval.org/category/3download.html

A common framework for strategic planning models.

Home

About VisionEval Information for Users Information for Developers Download

VisionEval is currently operated by the Collaborative Development of New Strategic Planning Models Pooled Fund.

Download

Get VisionEval Here

Warning This Download is approximately **515 Megabytes** (Humongous!)

The link above will download a .zip file containing the following:

- The VisionEval framework code
- VE-RSPM, VE-RPAT, VE-GUI, and VE-ScenarioViewer
- All necessary R packages

The current version of VisionEval requires R 3.5.1 to be installed on your computer. You can find the R 3.5.1 installer for Windows here.

Many users find that RStudio is a better version of the standard R interface. Rstudio is particularly recommended if you plan to clone and explore the Visioneval source code from GitHub.

Install

After installing R 3.5.1 and downloading the VE Installer from the link at the top, unzip the folder to the destination folder of your choice.

Using the Tools – Running models

- verpat() for the VERPAT example model
- verspm() for the VERSPM example model
- verspm(scenarios=TRUE) to run multiple scenarios
- verpat(scenarios=TRUE) to run multiple scenarios
- vegui() to start the GUI
 - navigate to your destination folder to find the model run scripts
- VisionEval.bat to start the R VisionEval session again

Using the Tools – Running VEGUI

vegui() to start the GUI

 navigate to your destination folder to find the model run scripts

Run

• Runs the model

VisionEval Model Runner	× + k			-		x
← → C ③ 127.0.0	1:6223			☆	θ	:
visioneval cybicing innervation	del Runner					
Scenario	Select scenario run scrittur. Copy scenario	I				
Settings	Run script					
Inputs	E:\projects\clients\odot-visioneval\VE-inst	aller-windows-R3.5.2\models\VERPAT	T\run_model.R			
Run	Modules in model					
Outputs	ModuleName	PackageName	♦ RunFor	Year		÷
	1 CreateHouseholds	VESimHouseholds	AllYears	Year		
	2 PredictWorkers	VESimHouseholds	AllYears	Year		
	3 PredictIncome	VESimHouseholds	AllYears	Year		
	4 CreateBaseSyntheticFirms	VESyntheticFirms	BaseYear	Year		
	5 CreateFutureSyntheticFirms	VESyntheticFirms	NotBaseYear	Year		
	6 CalculateBasePlaceTypes	VELandUse	BaseYear	Year		
	7 CalculateFuturePlaceTypes	VELandUse	NotBaseYear	Year		
	8 CreateBaseAccessibility	VETransportSupply	NotBaseYear	Year		
	9 AssignVehicleFeatures	VEHouseholdVehicles	NotBaseYear	Year		
	10 CalculateTravelDemand	VEHouseholdTravel	NotBaseYear	Year		
	Showing 1 to 10 of 19 entries		Previous 1	2	Next	t

Using the Tools – Folder setup

s⊧od

- Model folder
 - run_model.R
- defs folder
 - Definitions / parameters
- Inputs folder
 - Input *.CSV files
- Outputs Datastore
 - Output *.RDA R binary files
 - Use

readDatastoreTables()helper function to read into R

	Test1			_ D X
				~ ()
ot-visi	oneval + VE-installer-windows-R3.5.2 + mo	odels ► VERSPM ► Test1 ►	♥ 🖒 Sear	ch Test1 🔎
^	Name	Date modified	Туре	Size
	鷆 Datastore	3/7/2019 9:28 AM	File folder	
	퉬 defs	3/7/2019 9:17 AM	File folder	
	퉬 inputs	3/7/2019 9:17 AM	File folder	
	gitignore	3/7/2019 9:17 AM	Text Document	1 KB
	Dog_2019-03-07_09_51_07.txt	3/7/2019 9:51 AM	Text Document	1 KB
	ModelState.Rda	3/7/2019 9:51 AM	RDA File	1 KB
	🖄 rspm_visioneval.Rproj	3/7/2019 9:17 AM	R Project	1 KB
	run_model.R	3/7/2019 9:17 AM	R File	5 KB

readDatastoreTables() example

```
library(visioneval)
readDatastoreTables(
  Tables_ls = list(Vehicle=c("Type", "MPG")),
  Group = "2038",
  DstoreLocs_ = c("Datastore"),
  DstoreType = "RD"
  )
```


Using the Tools – Multiple Scenarios

- Sensitivity testing of the relationship between inputs and outputs
- Model every combination of input dimensions

• Example Results in 324 Model Runs (2*3*3*2*3*3) VEScenarioViewer/verpat.html and VEScenarioViewer/verspm.html

	Scenario Viewer	×	+						-	٥	×
VERPAT Scenario Viewer About Quick Start Detailed Instructions Scenario Input Levels Clear All Selections Bicycles Demand Management Land Use Parking Transit Vehicle Travel Cost	\leftrightarrow \rightarrow C \triangle	 Not secure 	gregorbj.github.io/Vision	Eval/sources/VEScenarioVie	ewer/verpat.html			• 5	o	Θ	:
About Quick Start Detailed Instructions Scenario Input Levels Clear All Selections Bicycles® Demand Management® Land Use® Parking® Transit® Vehicle Travel Cost® 100 100 100 100 100 100 100 100 100 100	٨				/ERPAT Scer	nario Viewer					
Scenario Input Levels Clear All Selections Bicycles Demand Management Land Use Parking Transit Vehicle Travel Cost	$< \$			Abo	out Quick Start	Detailed Instructions					
Bicycles ①Demand Management ②Land Use ①Parking ③Transit ③Vehicle Travel Cost ③ 10^{-1}_{140} 11^{-1}_{120} 10^{-1}_{140} 11^{-1}_{120} 10^{-1}_{140} <	S	cenario In	put Levels C	lear All Selection	ons						
$ \begin{bmatrix} 1 & 1 & 1 & 2 & 1 \\ 100 & 100 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$		Bicycles	Demand	Management	Land Use	Parking	Transit	Vehicle Travel Cost			
$\begin{array}{c} 40 \\ 20 \\ 0 \\ 1 \\ 1 \\ 2 \end{array}$		L1 160 - 140 - 120 - 100 - 80 - 40 - 20 - 0 - 1	$\begin{array}{c} 2 \\ 100 \\ 90 \\ 90 \\ 90 \\ 70 \\ 60 \\ 50 \\ 40 \\ 20 \\ 10 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$				L1 L2 L3 100 90 80 70 60 60 50 40 - 100 - 1 2 3	L1 L2 L3 100 - 90 90 - 90 80 - 70 - 60 - 60 - 60 - 60 - 60 - 60 - 6			
wodel Outputs: 324 scenarios selected out of 324 scenarios Clear All Selections	IVI	iodei Outp	outs: 324 scena	arios selected (out of 324 scena	rios Clear All Sel	ections				

Vehicle Cost Per Capita

DVMT Per Capita

GHG Emissions Per Capita

• Filter Outputs by Selected Scenarios

🗋 Scenario Vi	ewer × +						— f	J ×
\leftrightarrow \rightarrow C	 ᢙ O Not secure gregorb 	j.github.io/VisionEval/sources/VEScen	arioViewer/verpat.html			④ ☆	D	0:
			VERPAT S	cenario Viewer				
			About Quick Sta	The Detailed Instructions				
	Scenario Input L	evels Clear All Sel	ections					
	Bicycles	Demand Management	Land Use	Parking	Transit 🕄	Vehicle Travel Cost		
	hodel Outputs: *	162 scenarios select	ed out of 324 sc	enarios Clear All Se	L1 L2 L3 90 00 00 00 00 00 00 00 00 00	L1 L2 L3 100 90 80 70 60 50 40 30 20 1 2 3 1 2 3		
	Fatalities & In	juries 🕄 Vehi	cle Cost Per Capita	DVMT Per Capita	GHG E	missions Per Capita		
	Average = 3.4 annua	I per 1000 pop Averag	e = 2.7 annual per capita	Average = 18 daily per c	apita Average	e = 5.7 annual per capita		

_ . . . _ _

Using the Tools – Scenario Viewer

• Filter Inputs by Desired Outcomes

🗅 Scenario Viewer	× +						_	o ×
\leftrightarrow \rightarrow C \triangle \bigcirc Not	t secure gregorbj.gith	ub.io/VisionEval/sources/VEScena	ioViewer/verpat.html			⊕ ☆	• •	e :
			VERPAT Sce	nario Viewer				
			About Quick Start	Detailed Instructions				
Scenar	rio Input Lev	els Clear All Sele	ctions					
В	Bicycles	Demand Management	Land Use	Parking	Transit	Vehicle Travel Cost		
160 - 140 - 120 - 100 - 80 - 40 - 20 - 0 -		$\mathbf{L}^{110} \mathbf{L}^{2} \mathbf{L}^{3}$	L1 L2		L1 L2 L3 100 90 80 70 60 50 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - - 0 - - - - - - - - - - - - -	L1 L2 L3 100 90 80 70 60 50 40 30 20 1 2 3 1 2 3		
Moder	Fatalities & Injuri		e Cost Per Capita	DVMT Per Canita	GHG Emis	sions Per Canita		

Average = 2.8 annual per capita 14 -

Average = 18 daily per capita 15 -

10 -

0+

Average = 5.7 annual per capita

Using the Tools – Additional Resources

- Getting started
 - <u>https://github.com/gregorbj/VisionEval/wiki/Getting-Started</u>
- Tutorials
 - VERSPM inputs, outputs, modules, etc.: <u>https://github.com/VisionEval/VisionEval-Dev/blob/readme-dev/docs/tutorials/verspm/Main.md</u>
 - VERPAT covers common GUI, multi-scenarios & scenario viewer: <u>https://github.com/gregorbj/VisionEval/wiki/VERPAT-Tutorial-Overview</u>
- Example module documentation
 - <u>https://github.com/gregorbj/VisionEval/blob/master/sources/modules/VEHousehold</u> <u>Travel/inst/module_docs/CalculateVehicleTrips.md</u>
- VisionEval system design
 - <u>https://github.com/gregorbj/VisionEval/blob/master/api/model_system_design.md</u>

VE-RSPM packages

Brian Gregor, Oregon System Analytics

See Talking points by package here: https://github.com/gregorbj/VisionEval/blob/develop/api/VE_Training_March_13-14_2019/VE_Training.md

Day #1 Wrap-up

Tara Weidner, ODOT Transportation Planning Analysis Unit

Time	Item	Lead
8:00	Welcome and Introductions	Tara Weidner, ODOT
8:10	Review VEHouseholdVehicles	Brian Gregor, OSA
8:55	Review VEHouseholdTravel	Brian Gregor, OSA
9:40	BREAK	ALL
10:00	Review VEPowerTrainsAndFuels	Brian Gregor, OSA
10:00	Review VETravelPerformance	Brian Gregor, OSA
11:30	Applications/Resources and Adjourn	Tara Weidner, ODOT

VE-RSPM Packages, Continued

Brian Gregor, Oregon System Analytics

See Talking points by package here: https://github.com/gregorbj/VisionEval/blob/develop/api/VE_Training_March_13-14_2019/VE_Training.md

Vehicle & Fuel Options

/isi	onEval Vehicle & Fuels Options by Veh	icle Group						
				١	/ehicle Gro	oup		
		LDV-	LDV-	LDV-	HD	Transit-	Transit-	Transit-
		HH	CarSvc	ComSvc	Trucks	Van	Bus	Rail
	VEHICLE OPTIONS							
	Gas/internal combusion (ICE)	***	%	%	%	%	%	%
	Hybrid Electric (HEV)	***	%	%	%	%	%	%
	Plug-in Hybrid (PHEV)	***	NA	NA	NA	NA	NA	NA
	Full Electric (EV)	***	%	%	%	%	%	%
	FUELOPTIONS							
	Gasoline & Ethanol	%	%	%	%	%	%	%
	Diesel& Biodiesel	%	%	%	%	%	%	%
	Natural gas (CNG, LNG) & RNG/biogas	CNG	CNG	CNG	LNG	CNG	CNG	NA

*** For LDV HHs, options are provided for sales mix, adjusted by user inputs on Veh age and %LtTrk inputs based on Federal CAFÉ, CA ZEV (Oregon Reference), and STS-Vision

Oregon Vehicle & Fuels Input choices

VE provides default values for Vehicles and fuels and optional scenario inputs that are used instead if available. Some terms:

• Vehicle Groups - 3 light duty vehicles (households, Car Service, Commercial service), 3 public transit vehicles (vans, buses, rail). Only the household vehicles are modeled in full--using vehicle sales mix assumptions by year, impacting travel costs and VMT-other vehicle group model simpler fleet-wide attributes (on-road vehicles in each year) which are applied to VMT estimates.

• Vehicle Powertrains - 4 types: gas/internal compustion (ICE), hybrid (HEV), plug-in hybrid (PHEV), and full electric(EV). Default charactristics of each type include fuel efficiency (MPG, MPK) and battery range.

• Vehicle inputs - User provides by vehicle group: Powertrain mix, %light truck(LDV only), vehicle age

• Fuel & biofuel choices - Gasoline & Ethanol, Diesel & Biodiesel, Natural gas (CNG, LNG) & RNG/biogas, Electricity. Default carbon intensity of each type is provided.

• Fuel inputs - Explicitly specify mix of all fuel choices or combine into a single average carbon intensity value(composite) by vehicle group, which enables policies that specify a percent reduction over a set of years.

VisionEval Congestion Model

FIGURE 78. SCHEMATIC OF AGGREGATE TRAFFIC EQUILIBRIUM MODEL

Next Steps

Tara Weidner, ODOT Transportation Planning Analysis Unit

Oregon VisionEval Applications

Statewide Tool (VE-State)

- Statewide Transportation Strategy (STS)
 - Vision & Monitoring
 - for GHG targets
- Statewide Modal Plans
 - Transportation Plan
 - Oregon Highway Plan
- Respond to Qs
 - Emerging Tech
 - DOT Revenue Impacts

MPO Tools (VE-RSPM)

- Strategic Assessment / Scenario
 Planning
 - RTP Vision & Monitoring
 - GHG/other metrics

- Respond to Qs
 - Carbon Footprint
 - Climate Action Plans

Includes GreenSTEP, RSPM, and VisionEval tools

ODOT's S-T-O-RM Analysis Toolkit

MPO Strategic Assessment Project

Planning Track...

- Kickoff
- Key policies/outcomes
- Data Collection
 - Reference review
 - Alt Scenarios

Technical Tool Track...

- VisionEval 101/Training
- Adopted RTP data
- Prep for Input Review
 - Place Type (maps)
 - Transport inputs (tables)
- Calibrate/Validate
- Run Reference Scenario
 - Run Sensitivity Tests 1-off, combinations Resilience, relative impact
- Key Paths (filter to meet criteria)
- Documentation

- Results-Reference
- Results-Sens Tests
- Key Paths
 - Criteria
 - Local Agreement
- Link to Plans

Data collection/input review

Designal	Local	Actions	Collaborati	ve Actions
Regional ContextCommunityMarketing & Incentives		Vehicles & Fuels	Pricing	
• Demographics • Income Growth • Fuel Price	 Future Housing (Single- & Multi-Family) Parking Fees Transit Service Biking 	 TDM (home & work-based) Car Sharing Education on Driving Efficiency Intelligent Transportation Systems 	 Vehicle Fuel Economy (mpg) Fuels Commercial Fleets 	 Pay-As-You- Drive Insurance Gas Taxes Road User Fee

Populate with statewide model values, review with locals

- Local Actions
 - Community Design (Place Types)
 - Local Actions Transportation (input tables)
- Statewide defaults
 - Collaborative/State-led Actions
 - Regional Context variables

Local Land Use Input (via Place Types)

For each year modeled:

Place Types used to organize inputs & communicate to planners

- Regional Travel Model TAZ Data
 - Population & Households
 - Employment by type
- Built Form Data (TAZ)
 - Unprotected Land Area (GIS minus water, parks)
 - Local input on Design D & Transit D

Add Census Data (BZone)

- Dwelling units SF/MF Type shares (=HHs)
- Dwelling units Income quartile shares
- Average HH size, %1-person HHs

After Local review, aggregate to Bzones

Place Types (pop, emp, 5Ds, etc.)

RVMPO 2010 Place Types (V5)

Neighborhood Character (Development Types)

Background Map Source: Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, and the GIS User Community

Background Map Source: Es bed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-

^{EGP, and the GIS Use Community} Oregon Place Types info and MPO maps.

Instructions

Local Transportation Input (Tables/Maps)

Strategic Assessment Data Gathering- VisionEval Central Lane MPO 2019

Pricing

Household travel costs are influential on the amount of travel. They are calculated from the amounts of miles driven combined with fuel/electricity consumed, fuel and operating costs, fuel taxes and fees, PAYD insurance, and other external costs. Gas taxes, annual vehicle fees,

OreGo and additional VMT fees are used to to reduce or recover indirect social costs of

Input	Units
State & Local Road Fees	
Gas tax	\$/gallon,
 Annual Vehicle Fees 	\$/vehicle/vr
Congestion charge	
Cost	\$/mile
 % Freeway/Arterial miles 	% coverage
covered	
Pay as you drive (PAYD	% HHs using
Insurance	
VMT fees (beyond OreGo)	\$/mile

Input	
State & Local Gas Tax	Befile: Lo
State & Local Annual <u>Veh</u> Fees	Be
Congestion Charge	
PAYD Insurance	55 01
VMT Fees	STS: O

Strategic Assessment Data Gathering- VisionEval Central Lane MPO 2019

Transportation Options

Bicycle and light vehicle utilization is represented as the share of single occupancy vehicle trips that are diverted to active modes. Households are identified as participating in a car-sharing program (with adjustments to auto ownership), based on the characteristics of the household and the extent of available car-sharing programs. Households and workers are designated as participating in a number of TDM (transportation demand management) programs based on program deployment and household characteristics.

Input	Units	Geography	Base Year Source	Forecast Source	Considerations
Bike/Light Vehicle Diversion	% Single Occupancy Vehicle trips diverted	Division	2010 OHAS survey, local data	MPO (planned goal)	
TNC Deployment Service Coverage by Level Average TNC Vehicle Age 	High/Low Svc Level years	District Division	(MPO or Place Type VE-State default)	MPO (planned goal)	
Workplace TDM Programs	% of HHs engaged in high quality program	District	(MPO or Place Type VE-State default)	MPO (planned goal)	
Home-based TDM Programs	% of HHs engaged in high quality program	District	(MPO or Place Type VE-State default)	MPO (planned goal)	

Input	2005	2010	2035	Source
Bike/Light Vehicle Diversion (% diversion by TAZ/District)	Eug/Spr/Cob 5%/1%/0%	Eug/Spr/Cob 8%/2.2%/0%	Eyg/Spr/Cob 24%/6%/1%	ETSP
TNC Deployment Coverage- High service (TAZ/District s)	map	map	map	ETSP
Ave TNC <u>Veh</u> Age	Eug/Spr/Cob 7/7/7	Eug/Spr/Cob 7/7/7	Eug/Spr/Cob 5/5/5	VE State
Workplace TDM Programs (% participation by TAZ/District)	map	map	map	ETSP
Home-Based TDM Programs (% participation by TAZ/District)	map	map	map	ETSP

Outputs - MPO Strategic Assessment

Outputs – Gap to Vision & Relative impact

Projected GHG Emissions

Light Duty Vehicle CO2e Percent Change from 1990

Outputs – Multiruns/Scenario Viewer

Corvallis Metropolitan Planning Area Scenario Viewer

About This Effort Quick Start Detailed Instructions

Scenario Input Levels | Clear All Selections

Model Outputs: 32 scenarios selected out of 288 scenarios | Clear All Selections

18 18 20 22

14

Annual Household Vehicle Cost

Walk Travel Per Capita 2010 Value = **130** annual trips

Truck Delay

http://www.oregon.gov/ODOT/TD/TP/Pages/scenarioviewer.html

11

RESOURCES Oregon Applications

PLANNING FOR AN UNCERTAIN FUTURE External Forces TODAY Choices and Actions FUTURE C

- VisionEval
 - OSTI Oregon Scenario Planning <u>website</u>, and <u>RSPM brochure</u>
 - OSTI Strategic Assessment <u>1-pager</u>
- Broader Tools
 - <u>OSTI GHG Tools Overview</u> high-level background on various current analysis tools and their capabilities/limitations for GHG analysis and reporting. How Strategic Models fit into analysis toolkit.

RESOURCES Case Studies

- Oregon
 - ODOT <u>Statewide Transportation Strategy</u> (2012) and <u>STS monitoring</u> <u>report</u> (2018)
 - Portland Metro's <u>Climate Smart Strategy</u> (2014) and Monitoring report <u>Appendix J to the RTP</u> (2018)
 - Other VisionEval MPO <u>Scenario Planning</u> in Oregon
- National
 - VisionEval Tool Applications <u>case study reports</u>

Thank You!

- Feedback on Training: Brooke or Tara
- Qs on Install/getting model to run: Jeremy
- Qs on Oregon Application: OSTI (Tara, Brian H, Cody)

June 2, 2019 VE Training Workshop (1.5-hrs) @ TRB Planning Applications Training in Portland

