
Confidential Use Only – Do Not Share

INFRASTRUCTURE



Presto @ Facebook

Nezih Yigitbasi

Past, Present, and the Future



• 34 releases (0.192 to 0.215)
• ~2700 commits
• ~95 new contributors (total 358)
• ~600 new forks (total 2884)

Looking Back at 2018



• Multiple use cases
• warehouse ETL and ad-hoc analytics
• dashboards
• analytics backend for A/B testing
• analytics backend for user facing products

• 1000s of nodes across several data centers
• 100s of PBs and quadrillions of rows processed per day
• > 80% of new warehouse ETL workloads on Presto

Presto @ Facebook



• Apply column store state of the art to Presto
• CPU-friendly loops, vectorization, cache-consciousness, etc.
• work with bounded memory

• Much better pushdown for complex types
• ~2.6x CPU efficiency win for basic star schema query

Making Presto More Efficient
(a.k.a. Project Aria)



• Support running queries above distributed memory limits
• bucket-by-bucket execution helps, but needs bucketed tables

• materialize exchanges before joins & aggregations

• Partial recovery support for long running queries
• retry failed “lifespans” in a task
• is the output data consumed?
• reschedule failed lifespans to a different task
• cleanup partial output

Breaking the Memory/Duration Barrier
(a.k.a. Presto Unlimited)



• Dispatcher
• Transport improvements

• HTTP/2 (RFC 7540)
• SMILE
• Afterburner

Coordinator Scalability



• Coordinator does a lot today
• parse, analyze, queue, manage workers & work, etc.

• Pull out the queueing & resource management
• Offload the coordinator
• Potentially better resource management decisions

• multiple clusters per data center

Coordinator Scalability: Dispatcher



• HTTP/2 (RFC 7540)
• binary encoding, header compression, session multiplexing, etc.

• SMILE
• Jackson’s binary encoding
• no change needed in application

• Afterburner
• Jackson module for code generation

Coordinator Scalability: Transport Improvements

* all disabled by default



• System pool is gone!
• Better visibility into tracked memory

• /v1/cluster/memory and /v1/memory/{pool_name} endpoints
• Leak detector & more resilient OOM killer

• Reserved pool is next
• major source of inefficiency
• can already be turned off

Memory Management



• Initially contributed by Teradata/Starburst

• Broadcast or distributed join
• Order of relations in a join

• improves memory usage significantly for certain joins

• Reorder inner joins stacked on top of each other

Cost Based Optimization



• Share SQL for common functions
• Call external services
• Custom functions a.k.a. UDFs

• performance & isolation concerns

Function Support



• Today connectors are like simple data/metadata sources
• why not better utilize connector capabilities?

• Ask the connectors about the rules they support
• Let them rewrite subtrees of the plan
• Push down filter/project/aggregation to connectors

Connectors to Participate in Optimization





• Warnings framework
• Improvements to geospatial functionality

• distributed spatial join, performance optimizations, support for 
WKB/EntGeoPolygon formats, etc.

• Improvements to coordinator web UI
• Raptor V2 [WIP]
• Elasticsearch connector
• Kudu connector
• S3 Select support

And Many More ...



http://tinyurl.com/presto-paper

http://tinyurl.com/presto-paper


• Each release is verified extensively @ scale
• Improve the verifier tool
• Performance & reliability testing
• Branch-based release model

Releases



Community



Thank You


