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Abstract. This paper concerns with adaptive image processing for vi-
sual teach-and-repeat navigation systems of autonomous vehicles oper-
ating outdoors. The robustness and accuracy of these systems relies on
their ability to extract relevant information from the on-board camera
images, which is then used for autonomous navigation and map building.
In this paper, we present methods that allow an image-based navigation
system to adapt to varying appearance of outdoor environments caused
by dynamic illumination conditions and naturally occurring environment
changes. In the experiments performed, we demonstrate that adaptive
and learning methods for camera parameter control, image feature ex-
traction and environment map refinement allow autonomous vehicles to
operate in real, changing world for extended periods of time.

1 Introduction

Digital cameras are gradually becoming one of the most important sensors used
in mobile robots that are deployed in natural environments. Their popularity
can be attributed to the low-price, small size and the fact that they can provide
large amounts of data in real time. However, while a typical camera generates
a significant amount of data over relatively short time periods, most of this
data are not relevant to the tasks assigned to a robot. Thus, a crucial problem
of vision-based systems is to tackle the extraction, storage and management of
relevant information contained in the image streams. Ideally, a vision-guided
robot should not only be able to extract information rich enough to perform the
tasks at hand, but also to build upon and gradually improve its knowledge of
the environment in order to perform its tasks efficiently.

To achieve that, the images acquired by the camera should contain a suf-
ficient number of identifiable, salient elements that are pertinent to the task
at hand. These elements have not only to be extracted but, most importantly,
correctly interpreted and utilised for the required task. Interpretation of images
becomes more efficient and reliable if the robot can anticipate the information it
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searches for and adapt the aforementioned phases, extraction and interpretation,
accordingly. This requires the use of a knowledge base, which provides the robot
with the description of salient image elements that the robot might encounter
within different spatial and temporal contexts. A truly intelligent system should
be able to build and refine this knowledge base during the course of its routine
operation.

In the context of visual navigation, a robot must ensure that the images
have sufficient contrast to identify an adequate number of environmental fea-
tures necessary for position estimation of the robot relative to its goal. This
not only means that the robot has to adapt the camera settings and feature
extraction parameters properly, but also to carefully choose which of the ob-
tained features qualify to store for later use and when to retrieve or discard
them from its memory. In other words, the robot not only needs to make sure
that it perceives information relevant to its environment model but also that
it can update the environment model based on the perceived information. The
ability to adapt the settings of the robot perception subsystems, as well as its
knowledge bases, is especially crucial in environments which exhibit appearance
and structural changes. The causes for these changes include short-term factors
like varying illumination and unpredictable weather and long-term, partially
predictable seasonal processes.

This paper, hence concerns with adaptive methods, which are specifically
aimed at ensuring a reliable long-term operation of visually-navigated robots in
outdoor environments. In particular, we will discuss methods which (i) control
camera parameters to ensure sufficient quality of images obtained, (ii) adapt
image preprocessing modules to extract a suitable number of salient image ele-
ments for self-localisation and mapping, (iii) gradually adapt the environment
map, so that it stays up-to-date with the environment variations and (iv) in-
terpret the temporal behaviour of the changes in the map and predict which
elements of the map will be visible at a particular time and location. Apart
from a detailed description of the adaptive methods, we demonstrate that their
integration into a visual navigation pipeline significantly improves the efficiency
of long-term mobile robot operation in outdoor, unstructured environments.

2 Related work

Visual navigation systems can be divided according to their working principle to
map-less, map-based and map-building based [1]. Map-less systems such as [2]
assume that the environment contains traversable structures such as highway
lanes, pathways or roads. Thus, these systems attempt to identify the specific
structures and control the autonomous vehicle in a way to keep it on these struc-
tures. Map-based systems do not assume that traversable structures in the robots
environments will be easy to recognise. Instead, these systems navigate and lo-
calise the robots based on maps, which are known a priori [3]. Map-building-
based systems are able to build these maps themselves typically by utilising the
Simultaneous Localisation and Mapping (SLAM) [4–6] technology. These metric
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maps are then used to determine the position of the robot relative to its goal, so
that the robot can be driven along the intended trajectory. An alternative line
of map-building approaches does not perform metric position estimation of the
robot within the created maps. Instead, these systems use principles of visual
servoing, which allow the robot to repeat the path it was taught by a human
operator during a teleoperated drive [7–11]. While these ‘teach-and-repeat’ sys-
tems are somewhat less versatile, because the robot can only reach positions
it was driven to before, they were reported to be successfully deployed for long
periods of time [12–14]. Regardless of their principle, most of the aforementioned
systems are based on a similar processing pipeline: they capture images, process
them to extract salient features, match those features to environment represen-
tations they created beforehand and determine how to steer the robot so that it
stays on the intended path. Some of these systems are able to gradually adapt
their environment representations [13] or perception systems [15] to the changes
they observe as they repeat the taught paths.

The first stage of the visual processing pipeline is the image acquisition, which
determines if the images contain information relevant for further processing. This
is mainly influenced by the robot camera exposure settings, which have to be
adapted to varying illumination conditions. A fully autonomous system needs to
adapt the camera exposure constantly to cope with varying illumination. How-
ever, typical built-in auto-exposure methods are not aimed for visual navigation
and thus fail to set the exposure properly [16, 17]. Furthermore, while the impact
of settings of subsequent processing stages can be analysed offline based on the
images gathered, compensating for incorrect exposure setting is difficult.

Because of the aforementioned issues, several researchers proposed different
methods of exposure setting. For example, Lu et al. [18] measure colour image
quality by information-theoretic methods and propose to set the exposure to
maximise the Shannon entropy of the RGB image and optimise the camera
parameters by achieving similar values of exposure time and camera gain. Neves
et al. [19] build a histogram of pixel intensities and set the camera exposure based
on the mean sample value of that histogram. Additional to that, they take into
account the size of underexposed and overexposed areas in the image. Shim et
al. [16] base their exposure setting on the sum of gradients of individual pixel
intensities in the image, which they aim to maximise. Zhang et al. [17] compare
four gradient-based metrics that indicate the quality of images and conclude that
Shim’s method could be improved by the use of more advanced statistics and
the photometric response function compensation [20]. To assess the quality of
the images, Zhang uses the number of extracted FAST [21] features and tries to
obtain as many FAST keypoints as possible. As the FAST features are used in
many visual navigation systems, including the one which we use in this work [14],
Zhang’s method is highly relevant for the work presented herein.

Once an image is acquired successfully, the positions of its salient features
(or keypoints) are extracted in a process called keypoint detection. A typical
keypoint detection method, such as [21–23], assigns each pixel a given measure of
saliency and reports pixels with saliencies which are locally maximal and exceed
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a pre-set threshold. For example, a SURF [23] keypoint detection is based on a
Hessian matrix determinant, which retrieves points in the image with sufficient
contrast that makes them easy to localise and track. Since the aforementioned
threshold is set prior to the keypoint detection process, it is hard to predict
how many keypoints are going to be detected in the processed image. However,
the number of detected features strongly influences the ability of the robot to
successfully establish the relation of the current image to its environment model
and thus, to navigate reliably. As shown in [24], setting the threshold too high
and acquiring a small number of relevant features negatively impacts navigation
accuracy. On the other hand, too low threshold produces an excessive number
of features which do not contribute to the quality of navigation but hamper the
ability of the system to match them to the map in real time. Thus, similarly
to the camera exposure time, the saliency threshold needs to be continuously
adapted to the images that are being processed.

Once the salient keypoints are detected, another set of methods, called fea-
ture descriptors, are applied to the vicinity of these keypoints. The keypoints’
descriptors, which are typically engineered [22, 23, 25], are generally meant to
be invariant to contrast, scale, rotation and viewpoint changes. However, these
invariances are often not needed for autonomous navigation and other properties
such as robustness to illumination and seasonal changes, are desired. This led to
research of learning methods, which can generate feature description algorithms
robust to illumination and seasonal changes [15, 26]. In their latest work, [27]
even demonstrated that adaptation of the feature descriptors during routine
autonomous operation of the robots [27] improves their ability for long-term op-
eration. However, the feature description adaptation is planned to be included
in our system in the future and is not subject to the evaluation in this work.

The extracted features, along with their positions and descriptions, are used
either to build an environment map (teaching phase), or they are matched to
the map to determine the robot’s position relative to the intended path (repeat
phase). However, as the environment changes, the features stored in the initially-
taught map disappear and other features become visible. After a sufficiently long
time, an environment might change its appearance so much, that the map be-
comes completely obsolete and irrelevant. Thus, long-term operation requires
that the map is adapted to the changes during the robot operation. One of the
most popular frameworks for map maintenance is based on ‘experiences’ [28],
which allow representing the same location with several appearances or ‘experi-
ences’, which depend on particular environmental conditions such as day/night
or weather. During navigation, a robot retrieves several ‘experiences’ tied to a
given location and tries to associate them with its current view. The failed associ-
ation indicates that the appearance of the particular location changed drastically
and the perceived appearance is added to the set of experiences associated with
a given location. The experience-based approach allows not only smart manage-
ment of the environment maps [29, 30], but it was successfully integrated into
teach-and-repeat systems [13]. Another popular approach, inspired by the in-
terplay of long- and short-term memory, is described in [31, 32], who gradually
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add newly detected features and discard features which are no longer visible. A
similar approach, called Summary Map [33], ranks all the map features based
on their past visibility and uses the rank to remove or add the elements to
the current map. Inspired by [31–33], we implemented a similar scheme, which
gradually adapts the map during the routing operation of the robot. Unlike in
[31–33], where the experimental evaluation is performed off-line, our navigation
system updates the maps during its operation.

Once the navigation system can cope with the environment changes it ob-
serves during routine operation, its ability to operate for longer time periods is
greatly improved. Robust, long-term operation opens the possibility of repeated
re-observation of the same locations, which capture the long-term temporal be-
haviour of the environment variations. These observations allow the robot to
create not only spatial but also spatiotemporal models of its operational envi-
ronment. These models can predict, how a given location will look like at the
time of robot operation. For example, Lowry et al. [34] use consecutive observa-
tions to distinguish between time variable and time-invariant image components.
Other works [35–37] attempt to predict how a winter scene will look based on its
appearance captured during summer and vice versa. Visibility of image features
in a period of time is based on a temporal model, which is recomputed while
repeatedly watching the same or similar places. Rosen et al. [38] assume that
persistence of features is limited and they employ the survivability theory to
create environmental models that predict, which elements are not likely to be
visible anymore. Similarly, Krajńık et al. [39] propose to use spectral analysis
to capture the periodic behaviour of feature visibility caused by day/night and
seasonal cycles. Our navigation system employs the FreMEn method proposed
in [39, 40], to model the temporal behaviour of each feature.

Since the problem of long-term, reliable operation gradually comes into focus
of the robotics research community, the aforementioned list of papers is by no
means exhaustive. Thus, we refer to a comprehensive review of approaches for
long-term visual localisation in [41] and a general review of AI methods for
long-term autonomy in [42].

3 Adaptive navigation system

The navigation paradigm which we base our system on belongs to the group
of teach-and-replay navigation systems. These systems allow mobile robots to
autonomously traverse paths, through which they have been previously driven
by human operators. In the teaching phase, a person guides the robot along
the intended path and the robot creates an environment map. Once the map is
created, the robot can navigate along the path autonomously, which is referred
to as ‘replay’. The underlying principle of the autonomous replay depends on
the robot’s sensory and computational equipment and on the way it represents
the environment.

MESAS2018, 042, v6: ’Adaptive image processing methods for outdoor autonomous vehicles’ 5
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Fig. 1. Navigation method overview: During a teleoperated drive or ‘teaching’, a robot
creates a sequence of local maps at regular intervals (blue circles). Each map contains
the image captured at the given spot and the features extracted from the image. During
the replay phase, a robot at a given distance from the path start (white circle) selects
the closest map (red circle) and establishes correspondences between the visible and
mapped features. Difference between the horizontal coordinates of the feature pairs,
which corresponds to the horizontal shift of the images, determines the robot steering
velocity (shown as red arrows at the bottom).

3.1 Navigation system core

In our case, the robot is equipped with a monocular camera and odometry.
During the teaching phase, the robot uses the odometry to measure the travelled
distance and once every certain distance it saves the latest captured image along
with its features into a local map. Thus, at the end of the teaching phase, the
taught path is represented as a sequence of local maps indexed by their distance
from path start, see Figure 1. During the autonomous navigation or ‘replay’,
the robot retrieves the local map according to its distance from the path start
and matches the features extracted from its current camera image to the ones
from the local map. Then, it subtracts the horizontal image coordinates of the
corresponding pairs and uses a histogram voting scheme to determine the most
prevalent difference δ. This process, referred to as image registration, aims to
recover the horizontal shift δ between the image, which is currently seen and the
image stored in the local map. The value of δ indicates not only the difference
of the robot’s current heading from the heading it had during the teaching but
also its lateral displacement from the path. Thus, using a simple regulator to
steer the robot in a way, which would keep the difference between the horizontal
coordinates of the corresponding features close to zero, causes the robot to follow
the taught path. The works [14, 12, 43] show that if a robot traverses a closed path
repeatedly, the aforementioned steering correction scheme efficiently suppresses
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both lateral and longitudinal errors of the robot position and keeps the robot on
the taught path. The aforementioned navigation process is illustrated in Figure 1,
and also in several videos available from http://github.com/gestom/stroll_

bearnav.
The processing stages of the navigation pipeline along with the information

flows are shown in Figure 2. A classic, non-adaptive visual navigation pipeline
would compose only of the modules drawn in black, which acquire an image, ex-
tract its features, establish their correspondences with the map and calculate the
robot steering. However, outdoor visual navigation requires that the navigation
deals with changing illumination and environment variations. Thus, our system
extends the classic pipeline by several components responsible for adaptation
with the aforementioned variations – these modules are shown in Figure 2 in
blue colour. These modules control camera exposure to ensure sufficient qual-
ity of captured images, adapt feature extraction to obtain a suitable number of
image features, gradually adapt maps of the environment by removing obsolete
features and adding new ones, and predict which features are going to be visible
at a particular time and location. Since this paper is aimed at the evaluation

Fig. 2. Navigation system modules: The standard, core processing modules are drawn
in black, and the modules responsible for adaptation to the environmental conditions
are shown in blue.

of the adaptative methods on the quality of visual navigation, we provided only
a coarse overview of the navigation method. For further details, please refer
to [14, 43, 44]. In the following sections, we will explain how the individual mod-
ules (shown in blue in Figure 2) handle the adaptation of the core modules of
the visual navigation.

3.2 Camera exposure control

The quality of the image features directly depends on the quality of the input im-
age stream, which, in outdoor environments, is affected by varying illumination.
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Therefore, we developed a simple method, which compensates unstable illumi-
nation by adaptively setting exposure of the robot on-board camera, which, in
our case, does not provide us with a built-in automatic exposure setting. To do
so, we had to edit the driver of e-Con TARA camera, which is used on most of
our robots. Since the robot on-board camera is aimed forwards, the bottom half
of the images typically contains the ground, which does not provide information
particularly useful for robot navigation. Thus, our method attempts to control
the camera exposure to keep the mean brightness of the top half of the images
at a certain value.

Each time an ith image is captured, we calculate the mean brightness bi of
its top half. Then we compare the desired brightness bd to the actual one (bi)
and calculate the next exposure setting ei+1 according to:

ei+1 = ei + ce ei (
bd
bi

− 1), (1)

where ei is current exposure setting, ce ∈< 0, 1 > is the exposure control gain, bd
is the desired brightness and bi is current brightness of the image top half. Since
the exposure setting of the camera takes some time to take effect, we perform
this calculation once per five frames obtained.

The equation 1 has two parameters which have to be set: the desired image
brightness bd and the exposure control gain ce. To ensure quick response to
the changes in illumination, while avoiding possible oscillations of the image
brightness, we can set ce to or just below the value of one. As the paper [45]
showed that in challenging lighting conditions, slightly underexposed images are
more likely to be registered correctly, we set the desired mean brightness bd in
the range of 0.4 - 0.5. While this exposure setting scheme is rather simple, the
experiments shown in Section 4.2 indicate that the images obtained are more
suitable than if the exposure was controlled automatically in the traditional way,
i.e. according to the brightness of the entire image.

3.3 Feature detection adaptation

The accuracy and reliability of the visual navigation is affected by the number of
features the detector extracted from the on-board camera image. However, the
relation between the number of features and the quality of the navigation is not
straightforward. While the higher number of extracted features typically results
in more accurate registration, exceeding a certain amount of elements does not
bring significant improvement [15]. Moreover, a high number of features takes
more time to extract and match, which slows down the response of the robot to
its position perturbances. Furthermore, a high number of features increases the
chance of obtaining incorrect correspondences, which also negatively impacts the
navigation accuracy. From the experiments performed in [15], it seems that the
optimal number of features depends on the particular environment. However,
the results in [15, 46] show that it’s better to process the images in a way, which
produces a certain, fixed number of features per image.
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In the case of the SURF detector, which is used in our experiments, the
number of the extracted features depends on the local image contrast and the
value of the Hessian matrix threshold. Since the images the robot perceives along
the path differ in contrast, setting a fixed threshold would produce a different
number of features for each image. This often results in the deficiency of the
features required for accurate image registration or in detection slowdown due
to the excessive number of extracted features. Thus, one needs to adapt the
Hessian threshold on the fly during the robot routine operation.

To achieve that, we adapt the Hessian threshold according to the number of
features obtained in the last image. Let us assume that we want to obtain fd
features for further processing. Since we can always erase features that are in ex-
cess, but too many detected features would slow down the detection, we attempt
to set the Hessian threshold to obtain a slightly higher number of features f ′

d,
where f ′

d = fd (1 + o), where o stands for an ‘overshoot’ factor, which we set to
0.3 in our experiments. Assume that the last, ith image with a Hessian threshold
of ti provided us with fi features and we need to calculate the next threshold
ti+1. To do so, we order the detected features according to their response, i.e. the
value of their Hessian matrix determinant, obtaining a sequence H, where h(1)
is the Hessian response of the most prominent feature and h(fi) is the Hessian
threshold of the least prominent detected feature. If the number of features fi is
higher than f ′

d, then we simply set the ti+1 to the response of the feature, which
is at position (f ′

d + 1) in the aforementioned set, i.e. ti+1 = h(f ′
d + 1). In case

that fi < f ′
d, we take the 10 last values of H and use linear extrapolation to

determine ti+1. In particular, we use the values of h(fi − 10), h(fi − 9) . . . h(fi)
to estimated a linear function h′(n) and then set ti+1 to h′(f ′

d).
As mentioned in the previous section, features that are most useful for head-

ing correction typically appear in the upper half of the image. Thus, the detector
is set up to extract the features from this upper half. The impact of the afore-
mentioned Hessian threshold adaptation on the quality of visual navigation is
evaluated in Section 4.4, which shows that extracting the features from the upper
half of the image results in more accurate image registration.

3.4 Map adaptation

Outdoor, natural environment is subject to gradual, but perpetual change, which
affects both its structure and appearance. As the environment changes, the map
which was created during the teaching phase becomes gradually obsolete. Thus,
to achieve long-term operation, a mobile robot should be able to adapt its en-
vironment representation to the changes it observes. Ideally, the adaptation of
the map should be performed automatically during the routine robot operation,
and it should not require human intervention.

Inspired by the methods presented in [31–33], we implemented a method,
which allows to refine and update the environment maps during the routine
robot navigation. The core idea is to evaluate the utility of the elements in
the maps, keep the features which are useful, remove the ones which are often
matched incorrectly, and add features which were not visible before. To do so,
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we developed a system, which ranks the features according to their usefulness
for navigation by continuously monitoring if they provide correct information
about the robot heading. As mentioned in Section 3.1, our navigation system
continuously retrieves the image features from the local maps in the robot vicin-
ity, matches these features to the ones extracted from the camera image, and
uses a histogram voting method to determine the most frequent difference in the
horizontal coordinate of the feature pairs.

Thus, the system can assess the correctness of the established correspon-
dences by comparing the horizontal difference of the feature pairs to the result
provided by the histogram voting method. The Figure 3 illustrates the results
of this assessment – the feature pairs, whose horizontal displacement is in con-
sensus (which is established by the histogram voting), and are considered to be
correctly established, are drawn in green. The feature pairs, whose horizontal co-
ordinates differ from the consensus, are considered to be incorrectly established
(these are drawn in red colour in Figure 3). Whenever the system establishes
the correspondences and divides them into correct and incorrect, it increases
the rating of the map features, which were correctly matched and decreases the
rating of the map features, which produced incorrect correspondences. The score
of unmatched features is not changed. In this way, features that contribute to
the correct estimation of the robot heading gradually improve their rating, while
map features that are often mismatched end up with the low rating.

Fig. 3. Feature-based image registration results: the green correspondences are con-
sistent with the results of the histogram voting, and the map features that belong to
them will have their ranking increased. On the other hand, the correspondences in red
are considered to be incorrect, and ranking of their map features will be decreased.
Features with low ranking will be eventually removed from the map.

The system also rates unmatched ‘view’ features, i.e. features extracted from
the current camera image, according to the distance of their descriptors to the
features of the map. In particular, the rank of each view feature equals to its
distance (in descriptor space) to the nearest feature in the local map. Such
a rating corresponds to the feature saliency or uniqueness. Highly-rated view
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features, which are unlikely to be mismatched and paired incorrectly, are good
candidates to be added to the map.

Thus, to adapt the map, the system selects n map features with the lowest
ranking (i.e. the ones which are often mismatched) and substitutes them with
n view features with the highest ranking. One of the important questions is the
choice of n, which defines how quickly the map adapts to the changes. If the
n is low, the map cannot adapt to fast environmental changes, but it’s robust
to occasional glitches of the image registration, which might result in wrong
features being added to the map. An extreme case is n = 0, which indicates that
the map does not adapt to the environment change at all. If the n is high, the
map can adapt to rapid changes. However, since the navigation algorithm does
not establish the robot heading with perfect accuracy, the positions of the new
features tend to drift, and the map gradually deteriorates. Moreover, any failure
of the image registration populates the map with features at wrong positions.
An extreme case is n = fi, which means that the system discards all features
and creates a completely new local map. The thesis [47] demonstrates that both
extremes of n = 0 and n = fi are not suitable for long term navigation.

In our experiments, we set n to the half of the number of correctly-established
correspondences, i.e. to the half of the value of the highest bin of the histogram
voting. This value ensures that the map gradually adapts to the changes ob-
served. Since n is much lower than the number of features that constitute the
highest histogram bin, it makes the map update also prone to occasional failures
of the navigation. If the navigation method fails and the features are added to
the wrong positions, these wrong features do not cause the method to fail in the
subsequent navigation run. Rather, the system will start to decrease their rank,
because their positions will not conform to the results of the histogram voting,
and these features will be eventually removed from the map. To ensure that the
map always adapts to the changes, we set the minimal value of n to 10.

3.5 Map prediction

The previously presented map adaptation is capable of dealing with gradual en-
vironment changes. If the appearance change is significant and abrupt because
the robot observes a given location after a large hiatus, no reliable correspon-
dences will be established and the navigation method will fail. However, the
visibilities of the features are not random, but they are strongly influenced by
processes that exhibit certain temporal properties. For example, day-night, sea-
sonal and vegetation cycles cause certain features to disappear and appear again
with known periodicities, and tree growth rate decides the feature persistence.
Since the adaptive map already provides the robot with the ability to operate for
long time periods, the navigation system has the opportunity to learn about the
influence of time on the visibility of the image features in its maps, i.e. to find
the aforementioned cycles and map decay rates. In other words, the adaptive
map provides sufficient information to create a spatiotemporal representation
of the operational environment which allows predicting which features will be
visible at which time. Thus, a robot can predict the environment appearance at
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Fig. 4. FreMEn feature map for visual localization and navigation: The observations of
image feature visibility (centre, red) are transferred to the spectral domain (left). The
most prominent components of the model (left, green) constitute an analytic expression
(centre, bottom) that represents the probability of the feature being visible at a given
time (green). This allows to predict the feature visibility at a time when the robot
performs visual navigation (blue). Courtesy of [40].

night even if it would radically differ from the appearance observed during the
last robot operation.

To build such a predictive model, we capture and store the visibility informa-
tion of each map feature along with the time it was (un-)detected. Once we have
enough information, we can start to reason about the feature’s persistence (i.e.
how likely the feature will be visible in the future) [38], or periodicity [39, 40]. In
particular, our system employs the concept of the Frequency Map Enhancement
(FreMEn) [39], which retrieves the periodicities of the feature visibility through a
Fourier transformation-based spectral analysis. The resulting model can predict
the likelihood of each feature visibility in the future, which is especially beneficial
if the robot visits a given area after a long time [48, 39]. The core principle of
the FreMEn method is illustrated on the picture 4 and on the FreMEn project
webpage www.fremen.uk.

Thus, every time our robot loads the environment maps for navigation, it
creates temporal models of all features and calculates the likelihood of their
visibility at the time of its operation. The most likely-to-be-seen features (se-
lected by a greedy or a Monte-Carlo scheme), then constitute the map for a
given navigation trial. As explained in [48], the Monte-Carlo scheme is applied
to avoid situations, where some features are not detected simply because the
system does not place them in the environment map. The main benefit of the
FreMEn-based predictions comes from the fact that the FreMEn model captures
the cyclic behaviour of the feature visibility caused by the changing position of
the main outdoor illuminant, the Sun.

4 Experimental evaluation

To evaluate how the proposed adaptive methods affect the performance of the
visual navigation, we tested them on a CAMELEON ECA tracked robot for diffi-
cult terrain. The robot was modified by installing an aluminium superstructure,
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which contains several mounts for cameras, control laptop and other equipment.
In the experiments presented here, we used images from the left camera of the
e-Con TARA stereo device. For night experiments, we installed the Fenix 4000
lumen torch. The robot configuration used in our experiments is shown on Fig-
ure 5. The data gathering took place at Hostibejk Hill in Kralupy nad Vltavou,

Fig. 5. Cameleon robot configuration during the experimental trials.

Czechia, which is a small forest park with one building, see Figure 5. Near this
building, the robot was taught a closed trajectory, and then it traversed the
taught path autonomously more than 100 times over the course of one month
in various environmental conditions ranging from cloudless days, overcast, light
rain, sunset and night. Each time the robot used a local map to determine its
steering, it saved its current image and associated it with the given local map.
Since the taught path is represented by ∼80 local maps, and the robot traversed
the path autonomously more than 100 times, the resulting dataset is composed of
more than 8000 images. Approximately one-third of the images contain a small
building otherwise, the images associated with the local maps contain trees,
shrubs and other close and distant structures.

4.1 Evaluation metrics

The purpose of the image processing in our system is to register the images
from the local maps to the images captured by the robot camera. The horizontal
shift between the mapped and perceived images, which is recovered by establish-
ing correspondences between these image features, is used to correct the robot
heading. Thus, the more accurate and robust the image registration is, the more
precise and reliable visual-based navigation would be. Therefore, the primary
criterion to evaluate the visual navigation pipeline is the accuracy of the image
registration.

To do so, we use the dataset images captured during the autonomous drive to
simulate the robot movement by ‘replaying’ them to the robot navigation system.

MESAS2018, 042, v6: ’Adaptive image processing methods for outdoor autonomous vehicles’ 13
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The navigation system uses the histogram voting to calculate the horizontal
shift between the dataset images and the images in the local maps in the same
way as during normal operation. After that, we compare the calculated shift to
the ground truth, obtained by manual annotation. The difference between the
shift calculated by the system and the human-generated one is the measure of
the method accuracy. Since during each simulated drive, the system registers
several hundreds of images, we denote the result of ith image registration as
δi (see Section 3.1). By comparing the calculated δi to the values obtained by
human annotation γi, we obtain a sequence ǫi = |δi − γi| which corresponds to
the accuracy of the image registration for ith image pair.

Thus, evaluation of each method or its setting produces another error se-
quence of ǫi. To determine which method or which settings produce more ac-
curate navigation, we compare the values ǫi produced by the aforementioned
procedure statistically and qualitatively. For statistical evaluation, we apply Stu-
dent’s paired sample test, which is able to determine if an error sequence of ǫAi
generated by method A is statistically significantly smaller than another error
sequence ǫBi , generated by method B. For qualitative evaluation, we use the val-
ues of ǫi to calculate a function p(ǫt), which indicates the probability that the
registration error was lower than a given threshold, i.e. p(ǫ) = P (ǫi ≤ ǫt). While
the first test clearly indicates if one method performs better than the other,
displaying p(ǫt) of two different methods inside of the same graph provides one
with a better insight how much these methods actually differ.

4.2 Camera exposure control

To evaluate the impact of camera exposure adaptation, described in Section 3.2,
we let the robot traverse the taught path several times with three different
exposure settings. To provide a fair experimental setting, we performed the trial
during the late afternoon, when the illumination was quite stable. The first,
‘standard’ setting, used in our system by default, controls the camera exposure
to keep the brightness of the upper image half at 0.5. The second, ‘full’ setting,
controls the camera exposure to keep the brightness of the entire image at 0.5.
The third, ‘fixed’ setting, does not perform adaptation. Rather, the operator sets
the camera exposure at the beginning of the autonomous drive to a value, which
causes the overall contrast of the image to be equal to 0.5. During each traversal,
the robot collected 658 images, which were subsequently used for evaluation as
described in 4.1. For examples of the images gathered, see Figure 6.

While the graph shown in Figure 7 seems to indicate only the small dif-
ference in the performance of the methods, the statistical tests confirmed that
the ‘standard’ setting achieves statistically significantly lower registration errors
compared to the ‘full’ and ‘fixed’ exposure settings. Later on, we performed the
same test during sunset. Here, the robot was not able to navigate properly nei-
ther with ‘full’ nor ‘fixed’ exposure setting, but it worked with the ‘standard’
one. In this case, the navigation performance itself proved the superiority of the
‘standard’ exposure adaptation scheme, and it was not necessary to perform the
statistical or qualitative evaluation.
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Fig. 6. Different exposure settings. The first image is captured with fixed exposure,
the second with exposure control applied to the complete image and the last image
was captures when camera exposure was controlled according to the top half part of
the images.

Fixed: Fixed exposure, no adaptation
Full: Adapting to the entire image

Standard: Adapting to top half of the image
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16  18

P
ro

b
ab

il
it

y
 [

−
]

Registration error [px]

Fig. 7. Probability of registration error being smaller than a given number of pixels
for different exposure adaptation schemes.

4.3 Feature detection adaptation

To evaluate the impact of feature number adaptation, proposed in Section 3.3 we
used the dataset gathered with the ‘standard’ exposure setting. We replayed the
dataset images through the navigation system as described in Section 4.1 using
three different schemes of feature detection. The first, ‘standard’ setting, used in
our system by default, controls the Hessian threshold as described in Section 3.3
in a way to extract 500 image features from the top image half. The second, ‘full’
setting, controls the Hessian threshold as described in Section 3.3 in a way to
extract 500 image features from the entire image. The third, ‘fixed’ setting, does
not adapt the Hessian threshold. Rather, the Hessian threshold is set to hand
at the beginning of the simulated autonomous drive to obtain approximately
500 features from the first image. Examples of images with different keypoint
detection strategy is shown in Figure 8.

While the graph, shown in Figure 9, seems to indicate only a small differ-
ence in the performance of the methods, the statistical tests confirmed that the
‘standard’ Hessian adaptation achieves statistically significantly lower registra-
tion errors compared to the ‘full’ case where the Hessian threshold is adapted to
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Fig. 8. Different setting of the keypoints detection: In the first image, 500 features are
detected only from the top half. In the second image, the same amount is extracted
from the whole image, and the last image has a fixed Hessian threshold, which results
in feature deficiency.

Fixed: Fixed hessian threshold, no adaptation
Full: Adapting to the entire image

Standard: Adapting to top half of the image
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Fig. 9. Probability of registration error being smaller than a given number of pixels
for different Hessian threshold adaptation schemes.

extract features from the entire image as well as to the ‘fixed’ case, where the
Hessian threshold does not adapt but is fixed.

4.4 Map adaptation

To evaluate the effect of map adaptation, we the same dataset as in Section 4.3,
i.e. the dataset gathered with the ‘standard’ exposure setting. Again, we replayed
the dataset images through the navigation system as described in Section 4.1 us-
ing three different map adaptation schemes. The first, Adaptive map adaptation
scheme, used in our system by default, gradually exchanges the map features as
described in Section 3.4. The second, Plastic scheme, discards all features from
the map and saves the ones from the current view. This scheme corresponds to
setting the n parameter described in Section 3.4 to a very high value. The third,
Static map, does not adapt the map during autonomous traversals, which cor-
responds the n parameter being set to 0. The ability of feature matching using
Adaptive map and Static map is also shown in Figure 11. This time, the graph
shown in Figure 10 clearly indicates that the Adaptive map achieves lower reg-
istration errors compared to the Plastic adaptation scheme, which is caused by
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Plastic map: new map every traverse
Static map: no adaptation to changes

Adaptive map:  gradual adaptation to changes
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Fig. 10. Probability of registration error being smaller than a given number of pixels
for different map adaptation schemes in environment without significant appearance
changes.

the feature position drift, see [47] for details. Since the testing dataset does not
exhibit any significant appearance changes, the performance of the Static map
is comparable to the performance of the Adaptive one. This was also confirmed
by the statistical tests.

To further test the ability of the adaptive mapping to deal with the changing
environment appearance, we performed 12 autonomous traversals during sunset,
where the robot started its traversals during daylight and ended at full dark. To
allow the robot to autonomously navigate at night, we switched on its 4000lm
torch, see Figure 5. As shown in Figure 11, the Adaptive map provides more rele-

Fig. 11. Feature matching between the map and the current robot view: The first and
the third image shows that the use of Adaptive map results in more correspondences
compared to the Static map use, shown in the second and fourth image. The second
image pair shows a situation, where the light changed from full day to full night, and
the Static map, created during the day, becomes obsolete. The Adaptive map has
enough correct correspondences due to using information from Static map augmented
with features from later traversals.
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vant features to the navigation system compared to the Static map. As indicated

Plastic map: new map every traverse
Static map: no adaptation to changes

Adaptive map:  gradual adaptation to changes
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Fig. 12. Probability of registration error being smaller than a given number of pixels
for different map adaptation schemes with significant appearance changes.

by the Figure 12 and the statistical tests performed, the Adaptive and Plastic
maps also outperform the Static one in terms of registration accuracy. Note,
that the effects of the Plastic map drift, observed in the previous experiment,
are insigificant compared to the effects caused by the changes.

4.5 Map prediction

To evaluate the effect of map prediction, we processed data from 87 autonomous
traversals. We divided the dataset into a training set of length 57, which is used
to build temporal models of the features and a testing set, which we use for
evaluation as described in Section 4.1. To predict the features which are going
to be visible, we used the FreMEn [39] temporal model to predict 500 most likely
visible features as specified in Section 3.5. Then, we simulated the robot drive
on the testing dataset, where the maps were gathered both during the day and
night.

The difference between the registration error of the system using and not
using map prediction is shown in Figure 13. Statistical testing, performed as
specified in Section 4.1 confirmed that the map predicted by the FreMEn and
Monte Carlo scheme achieved lower registration error.

In comparison with the previous results, a higher error is more probable which
was caused by insufficient illumination of late testing drives. The lack of light
caused the camera to set longer exposure which caused significant blur in places
where the robot had to turn. Figure 14 demonstrate the gradual deterioration
of image quality in the testing set used. The images are taken from the same
part of the robot path at a different time. Despite the blurry images, the map
prediction method improved the directional correction.
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Adaptive map
Predictive map − FreMEn
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Fig. 13. Probability of registration error being smaller than a given number of pixels
with standard and predicted maps.

Fig. 14. Image blur caused by the lack of light at a sharp turn. The top left image is
from the beginning of testing dataset, and the bottom right image was captured at the
end of data collection.

5 Conclusion

We have presented adaptative methods for a visual navigation system, intended
for robots that are supposed to operate in outdoor environments for extended
periods of time. The purpose of these methods is to deal with the appearance
changes commonly occurring outdoors due to lighting variations and natural
processes which affect the environment structure. In a series of experiments,
performed on a real robot over the course of several weeks, we demonstrate
that adaptation of camera exposure, feature extraction and map representation
has a positive impact on the ability of the robots to autonomously navigate
outdoors. Finally, we demonstrated that a robot operating for extended periods
of time could acquire enough observations to understand how the environment
changes over time and use this knowledge to predict the future environment
appearance, which further improves the efficiency and reliability of its operation.
To ensure the reproducibility of the research presented here research, we provide
the system’s source codes as well as access to the datasets used for evaluation
at https://github.com/gestom/stroll_bearnav/wiki.
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