
𝑓
𝐴 𝐵

fletcher
(noun) a maker of arrows

A Typst package for diagrams with lots of arrows, built on top of CeTZ.

Commutative diagrams, flow charts, state machines, block diagrams…

github.com/Jollywatt/typst-fletcher

Version 0.4.5

Guide
Usage examples .. 3
Diagrams ... 4

Elastic coordinates .. 4
Fractional coordinates 4

Nodes .. 4
Node shapes ... 5
Node groups ... 5

Edges .. 6
Specifying edge vertices 6

Implicit coordinates 6
Relative coordinates 6
Named or labelled coordinates 7

Edge types .. 7
Tweaking where edges connect 7

Marks and arrows .. 8
Custom marks .. 8

Mark objects .. 9
Special mark properties 10
Detailed example .. 11

Custom mark shorthands 11
CeTZ integration ... 12

Bézier edges ... 12
Touying integration .. 13

Reference
Main functions ... 14

diagram() ... 14
node() ... 18
edge() ... 23

Behind the scenes .. 30
marks.typ ... 30
shapes.typ ... 34
coords.typ ... 40
layout.typ ... 42
draw.typ ... 45
utils.typ ... 48

1

https://typst.app/
https://github.com/johannes-wolf/cetz
https://github.com/Jollywatt/typst-fletcher

Assoc

Assoc

Assoc

Id

Id Id

Id

Div

DivDiv

Inv

Inv AssocAssoc

magma

semigroup unital magma quasigroup

monoid inverse semigroup loop

group

Id Id Id

𝑖𝐽 𝑖𝐽 𝑖𝐶

𝜋𝐽 𝜋𝐽 𝜋CP

𝑐𝜋 𝑐𝜋 𝑐𝜋

𝜆𝑔 𝜋𝐺 = 𝜋

𝜆𝑔 × 1 𝜋𝐺

𝑗𝜆𝑔

d𝜆𝑔 ⊗ (𝜆𝑔 × 1) 𝜋𝐺

Ω

𝑃 𝑃 𝑋

𝐽𝑃 𝐽𝑃 𝐽𝑋

𝜋∗(𝑇𝑋 ⊗ 𝑇 ∗𝑋) 𝜋∗(𝑇𝑋 ⊗ 𝑇 ∗𝑋) 𝑇𝑋 ⊗ 𝑇 ∗𝑋

𝑇𝑃 ⊗ 𝜋∗𝑇 ∗𝑋 𝑇𝑃 ⊗ 𝜋∗𝑇 ∗𝑋 𝑇𝐺𝑃 ⊗ 𝑇 ∗𝑋

input

memory unit (MU)

arithmetic & logic
unit (ALU)

control unit (CU)

output

2

Usage examples
Avoid importing everything with * as many internal functions are also exported.

#import "@preview/fletcher:0.4.5" as fletcher: diagram, node, edge

// You can specify nodes in math-mode, separated by `&`:
#diagram($
 G edge(f, ->) edge("d", pi, ->>) & im(f) \
 G slash ker(f) edge("ur", tilde(f), "hook-->")
$)

𝑓

𝜋
𝑓

𝐺 im(𝑓)

𝐺/ ker(𝑓)

// Or you can use code-mode, with variables, loops, etc:
#diagram(spacing: 2cm, {
 let (A, B) = ((0,0), (1,0))
 node(A, $cal(A)$)
 node(B, $cal(B)$)
 edge(A, B, F, "->", bend: +35deg)
 edge(A, B, G, "->", bend: -35deg)
 let h = 0.2
 edge((.5,-h), (.5,+h), $alpha$, "=>")
})

𝐹

𝐺

𝛼𝒜 ℬ

#diagram(
 spacing: (10mm, 5mm), // wide columns, narrow rows
 node-stroke: 1pt, // outline node shapes
 edge-stroke: 1pt, // make lines thicker
 mark-scale: 60%, // make arrowheads smaller
 edge((-2,0), "r,u,r", "-|>", f, label-side: left),
 edge((-2,0), "r,d,r", "..|>", g),
 node((0,-1), $F(s)$),
 node((0,+1), $G(s)$),
 node(enclose: ((0,-1), (0,+1)), stroke: teal, inset: 8pt),
 edge((0,+1), (1,0), "..|>", corner: left),
 edge((0,-1), (1,0), "-|>", corner: right),
 node((1,0), text(white, $ plus.circle $), inset: 2pt, fill: black),
 edge("-|>"),
)

𝑓

𝑔

𝐹(𝑠)

𝐺(𝑠)

⊕

An equation $f: A -> B$ and \
an inline diagram #diagram(
 node-inset: 2pt,
 label-sep: 0pt,
 $A edge(->, text(#0.8em, f)) & B$
).

An equation 𝑓 : 𝐴 → 𝐵 and

an inline diagram
𝑓

𝐴 𝐵.

#import fletcher.shapes: diamond
#diagram(
 node-stroke: black + 0.5pt,
 node-fill: gradient.radial(white, blue, center: (40%, 20%),
 radius: 150%),
 spacing: (10mm, 5mm),
 node((0,0), [1], name: <1>, extrude: (0, -4)), // double stroke
 node((1,0), [2], name: <2>, shape: diamond),
 node((2,-1), [3a], name: <3a>),
 node((2,+1), [3b], name: <3b>),
 edge(<1>, <2>, [go], "->"),
 edge(<2>, <3a>, "->", bend: -15deg),
 edge(<2>, <3b>, "->", bend: +15deg),
 edge(<3b>, <3b>, "->", bend: -130deg, label: [loop!]),
)

go

loop!

1 2

3a

3b

3

Diagrams
Diagrams created with diagram() are a collection of nodes and edges rendered on a CeTZ canvas.

Elastic coordinates
Diagrams are laid out on a flexible coordinate grid, visible when the debug option of diagram() is turned
on. When a node is placed, the rows and columns grow to accommodate the node’s size, like a table.

By default, coordinates (𝑢, 𝑣) have 𝑢 going → and 𝑣 going ↓. This can be changed with the axes option
of diagram(). The cell-size option is the minimum row and column width, and spacing is the gutter
between rows and columns.

#let c = (orange, red, green, blue).map(x => x.lighten(50%))
#diagram(
 debug: 2,
 spacing: 10pt,
 node-corner-radius: 3pt,
 node((0,0), [a], fill: c.at(0), width: 10mm, height: 10mm),
 node((1,0), [b], fill: c.at(1), width: 5mm, height: 5mm),
 node((1,1), [c], fill: c.at(2), width: 20mm, height: 5mm),
 node((0,2), [d], fill: c.at(3), width: 5mm, height: 10mm),
)

a b

c

d
0 1

2

1

0

(→, ↓)

Fractional coordinates
So far, this is just like a table — however, coordinates can be fractional. These are dealt with by linearly
interpolating the diagram between what it would be if the coordinates were rounded up or down.

a b

(0, 1)

d
0 1

2

1

0 a b

(0.25, 1)

d
0 1

2

1

0 a b

(0.5, 1)

d
0 1

2

1

0 a b

(0.75, 1)

d
0 1

2

1

0 a b

(1, 1)

d
0 1

2

1

0

Nodes
node((x, y), label, ..options)

Nodes are content centered at a particular coordinate. They can be circular, rectangular, or any custom
shape. Nodes automatically fit to the size of their label (with an inset), but can also be given an exact
width, height, or radius, as well as a stroke and fill. For example:

#diagram(
 debug: true, // show a coordinate grid
 spacing: (5pt, 4em), // small column gaps, large row spacing
 node((0,0), f),
 node((1,0), f, stroke: 1pt),
 node((2,0), f, stroke: blue, shape: rect),
 node((3,0), f, stroke: 1pt, radius: 6mm, extrude: (0, 3)),
 {
 let b = blue.lighten(70%)
 node((0,1), `xyz`, fill: b,)
 let dash = (paint: blue, dash: "dashed")
 node((1,1), `xyz`, stroke: dash, inset: 1em)
 node((2,1), `xyz`, fill: b, stroke: blue, extrude: (0, -2))
 node((3,1), `xyz`, fill: b, height: 5em, corner-radius: 5pt)
 }
)

𝑓 𝑓 𝑓 𝑓

xyz xyz xyz xyz

0 1 2 3

1

0

4

https://github.com/johannes-wolf/cetz

Node shapes
By default, nodes are circular or rectangular depending on the aspect ratio of their label. The shape op-
tion accepts rect, circle, various shapes provided in the fletcher.shapes submodule, or a function.

#import fletcher.shapes: pill, parallelogram, diamond, hexagon
#let theme = rgb("8cf")
#diagram(
 node-fill: gradient.radial(white, theme, radius: 100%),
 node-stroke: theme,
 (
 node((0,0), [Blue Pill], shape: pill),
 node((1,0), [_Slant_], shape: parallelogram.with(angle: 20deg)),
 node((0,1), [Choice], shape: diamond),
 node((1,1), [Stop], shape: hexagon, extrude: (-3, 0), inset: 10pt),
).intersperse(edge("o--|>")).join()
)

Blue Pill Slant

Choice Stop

Custom node shapes may be implemented with CeTZ via the shape option of node(), but it is up to
the user to support outline extrusion for custom shapes.

rect circle ellipse pill

parallelogram diamond
triangle house

chevron hexagon octagon

Node groups
Nodes are usually centered at a particular coordinate, but they can also enclose multiple centers.
When the enclose option of node() is given, the node automatically resizes.

#diagram(
 node-stroke: 0.6pt,
 node($Sigma$, enclose: ((1,1), (1,2)), // a node spanning multiple centers
 inset: 10pt, stroke: teal, fill: teal.lighten(90%), name: <bar>),
 node((2,1), [X]),
 node((2,2), [Y]),
 edge((1,1), "r", "->", snap-to: (<bar>, auto)),
 edge((1,2), "r", "->", snap-to: (<bar>, auto)),
)

Σ

X

Y

You can also enclose other nodes by coordinate or name to create node groups:

#diagram(
 node-stroke: 0.6pt,
 node-fill: white,
 node((0,1), [X]),
 edge("->-", bend: 40deg),
 node((1,0), [Y], name: <y>),
 node($Sigma$, enclose: ((0,1), <y>), inset: 10pt,
 stroke: teal, fill: teal.lighten(90%), name: <group>),
 node((2.5,0.5), [Z], name: <z>),
 edge(<group>, <z>, "->"),
)

Σ

X

Y

Z

5

https://github.com/johannes-wolf/cetz

Edges
edge(from, to, label, marks, ..options)

Edges connect two coordinates. If there is a node at an endpoint, the edge attaches to the nodes’
bounding shape (after applying the node’s outset). An edges can have a label, can bend into an arc,
and can have various arrow marks.

#diagram(spacing: (12mm, 6mm), {
 let (a, b, c, abc) = ((-1,0), (0,1), (1,0), (0,-1))
 node(abc, $A times B times C$)
 node(a, A)
 node(b, B)
 node(c, C)

 edge(a, b, bend: -18deg, "dashed")
 edge(c, b, bend: +18deg, "<-<<")
 edge(a, abc, a)
 edge(b, abc, "<=>")
 edge(c, abc, c)

 node((.6,3), [_just a thought..._])
 edge(b, "..|>", corner: right)
})

𝑎 𝑐
𝐴 × 𝐵 × 𝐶

𝐴

𝐵

𝐶

just a thought…

Specifying edge vertices
Generally, the first few arguments to edge() specify its vertices.

Implicit coordinates
To specify the start and end points of an edge, you may provide both explicitly (like edge(from, to));
leave from implicit (like edge(to)); or leave both implicit. When from is implicit, it becomes the coor-
dinate of the last node, and if to is implicit, the next node.

#diagram(
 node((0,0), [London]),
 edge("..|>", bend: 20deg),
 node((1,1), [Paris]),
)

London

Paris

Implicit coordinates can be handy for diagrams in math-mode:

#diagram($ L edge("->", bend: #30deg) & P $)
𝐿 𝑃

However, don’t forget you can also use variables in code-mode, which is a more explicit and flexible
way to reduce repetition of coordinates.

#diagram(node-fill: blue, {
 let (dep, arv) = ((0,0), (1,1))
 node(dep, text(white)[London])
 node(arv, text(white)[Paris])
 edge(dep, arv, "==>", bend: 40deg)
})

London

Paris

Relative coordinates
You may specify an edge’s direction instead of its end coordinate. This can be done with edge((x, y),
(rel: (Δx, Δy))), or with string of directions for short, e.g., "u" for up or "br" for bottom right. Any
combination of top/up/north, bottomp/down/south, left/west, and right/east are allowed. Together
with implicit coordinates, this allows you to do things like:

6

#diagram($ A edge("rr", ->, #[jump!], bend: #30deg) & B & C $) jump!

𝐴 𝐵 𝐶

Named or labelled coordinates
Another way coordinates can be expressed is through node names. Nodes can be given a name, which
is a label (not a string) identifying that node. A label as an edge vertex is interpreted as the position of
the node with that label.

#diagram(
 node((0,0), $frak(A)$, name: <A>),
 node((1,0.5), $frak(B)$, name:),
 edge(<A>, , "-->")
)

𝔄

𝔅

Node names are labels (instead of strings like CeTZ) so that positional arguments to edge() are pos-
sible to disambiguate by their type. (Node labels are not inserted into the final output, so they do not
interfere with other labels in the document.)

Edge types
There are three types of edges: "line", "arc", and "poly". All edges have at least two vertices, but
"poly" edges can have more. If unspecified, kind is chosen based on bend and the number of vertices.

#diagram(
 edge((0,0), (1,1), "->", `line`),
 edge((2,0), (3,1), "->", bend: -30deg, `arc`),
 edge((4,0), (4,1), (5,1), (6,0), "->", `poly`),
)

line

arc
poly

All vertices except the first can be relative coordinates (see above), so that in the example above, the
"poly" edge could also be written in these equivalent ways:

edge((4,0), (rel: (0,1)), (rel: (1,0)), (rel: (1,-1)), "->", `poly`)
edge((4,0), "d", "r", "ur", "->", `poly`) // using relative coordinate names
edge((4,0), "d,r,ur", "->", `poly`) // shorthand

Only the first and last vertices of an edge automatically snap to nodes.

Tweaking where edges connect
A node’s outset controls how close edges connect to the node’s boundary. To adjust where along the
boundary the edge connects, you can adjust the edge’s end coordinates by a fractional amount.

#diagram(
 node-stroke: (thickness: .5pt, dash: "dashed"),
 node((0,0), [no outset], outset: 0pt),
 node((0,1), [big outset], outset: 10pt),
 edge((0,0), (0,1)),
 edge((-0.1,0), (-0.4,1), "-o", "wave"), // shifted with fractional coordinates
 edge((0,0), (0,1), "=>", shift: 15pt), // shifted by a length
)

no outset

big outset

Alternatively, the shift option of edge() lets you shift edges sideways by an absolute length:

#diagram($A edge(->, shift: #3pt) edge(<-, shift: #(-3pt)) & B$) 𝐴 𝐵

By default, edges which are incident at an angle are automatically adjusted slightly, especially if the
node is wide or tall. Aesthetically, things can look more comfortable if edges don’t all connect to the
node’s exact center, but instead spread out a bit. Notice the (subtle) difference the figures below.

7

https://github.com/johannes-wolf/cetz

𝐴×𝐵 ×𝐶

Figure 1: With focus (default)

𝐴×𝐵 ×𝐶

Figure 2: Without defocus

The strength of this adjustment is controlled by the defocus option of node() (or the node-defocus
option of diagram()).

Marks and arrows
Arrow marks can be specified like edge(a, b, "-->") or with the marks option of edge(). Some
mathematical arrow heads are supported, which match →, ⇒, ⇛, ↦, ↠, and ↪ in the default font.

"->" "=>" "==>" "|->" "->>" "hook->"

A few other marks are provided, and all marks can be placed anywhere along the edge.

">>-->" "||-/-|>" "o..O" "hook'-x-}>" "-*-harpoon"

All the built-in marks are defined in the state variable fletcher.MARKS, which you may access with
context fletcher.MARKS.get().

head doublehead triplehead harpoon straight solid stealth

latex cone circle square diamond bar cross

hook hooks > < >> << >>>

<<< |> <| }> <{ | ||

||| / \ x X o O

* @ [] <>

Because it is a state variable, you can modify fletcher.MARKS to add or modify mark styles.

Custom marks
While shorthands like "|=>" exist for specifying marks and stroke styles, finer control is possible.
Marks can be specified by passing an array of mark objects to the marks option of edge(). For example:

8

#diagram(
 edge-stroke: 1.5pt,
 spacing: 25mm,
 edge((0,1), (-0.1,0), bend: -8deg, marks: (
 (inherit: ">>", size: 6, delta: 70deg, sharpness: 65deg),
 (inherit: "head", rev: true, pos: 0.8, sharpness: 0deg, size: 17),
 (inherit: "bar", size: 1, pos: 0.3),
 (inherit: "solid", size: 12, rev: true, stealth: 0.1, fill: red.mix(purple)),
), stroke: green.darken(50%)),
)

In fact, shorthands like "|=>" are expanded with interpret-marks-arg() into a form more like the
example above. More precisely, edge(from, to, "|=>") is equivalent to:

context edge(from, to, ..fletcher.interpret-marks-arg("|=>"))

If you want to explore the internals of mark objects, you might find it handy to inspect the output of
context fletcher.interpret-marks-arg(..) with various mark shorthands as input.

Mark objects
A mark object is a dictionary with, at the very least, a draw entry containing the CeTZ objects to be
drawn on the edge. These CeTZ objects are translated and scaled to fit the edge; the mark’s center
should be at the origin, and the stroke’s thickness is defined as the unit length. For example, here is a
basic circle mark:

#import cetz.draw
#let my-mark = (
 draw: draw.circle((0,0), radius: 2, fill: none)
)
#diagram(
 edge((0,0), (1,0), stroke: 1pt, marks: (my-mark, my-mark), bend: 30deg),
 edge((0,1), (1,1), stroke: 3pt + orange, marks: (none, my-mark)),
)

A mark object can contain arbitrary parameters, which may depend on parameters defined earlier by
being written as a function of the mark object. For example, the mark above could also be written as:

#let my-mark = (
 size: 2,
 draw: mark => draw.circle((0,0), radius: mark.size, fill: none)
)

This form makes it easier to change the size without modifying the draw function, for example:

#diagram(edge(stroke: 3pt, marks: (my-mark + (size: 4), my-mark)))

Internally, marks are passed to resolve-mark(), which ensures all entries are evaluated to final values.

9

https://github.com/johannes-wolf/cetz
https://github.com/johannes-wolf/cetz

Special mark properties
A mark object may contain any properties, but some have special functions.

Name Description Default

inherit The name of a mark in fletcher.MARKS to inherit properties from. This
can be used to make mark aliases, for instance, "<" is defined as
(inherit: "head", rev: true).

draw As described above, this contains the final CeTZ objects to be drawn.
Objects should be centered at (0, 0) and be scaled so that one unit is the
stroke thickness. The default stroke and fill is inherited from the edge’s
style.

pos Location of the mark along the edge, from 0 (start) to 1 (end). auto

fill
stroke

The default fill and stroke styles for CeTZ objects returned by draw. If
none, polygons will not be filled/stroked by default, and if auto, the style
is inherited from the edge’s stroke style.

auto

rev Whether to reverse the mark so it points backwards. false

flip Whether to reflect the mark across the edge; the difference between
and , for example. A suffix ' in the name, such as "hook'", results in
a flip.

false

scale Overall scaling factor. See also the mark-scale option of edge(). 100%

extrude Whether to duplicate the mark and draw it offset at each extrude
position. For example, (inherit: "head", extrude: (-5, 0, 5)) looks
like .

(0,)

tip-origin
tail-origin

These two properties control the 𝑥 coordinate of the point of the mark,
relative to (0, 0). If the mark is acting as a tip (or) then tip-
origin applies, and tail-origin applies when the mark is a tail (or

). See mark-debug().

0

tip-end
tail-end

These control the 𝑥 coordinate at which the edge’s stroke terminates,
relative to (0, 0). See mark-debug().

0

cap-offset A function (mark, y) => x returning the 𝑥 coordinate at which the
edge’s stroke terminates relative to tip-end or tail-end, as a function of
the 𝑦 coordinate. This is relevant for extruded edges. See cap-offset().

The last few properties control the fine behaviours of how marks connect to the target point and to the
edge’s stroke. Briefly, a mark has four possibly-distinct center points. It is easier to show than to tell:

tip-end

tail-end

tip-origin

tail-origin

See mark-debug() and cap-offset() for details.

10

https://github.com/johannes-wolf/cetz
https://github.com/johannes-wolf/cetz

Detailed example
As a complete example, here is the implementation of a straight arrowhead in src/default-marks.typ:

#import cetz.draw
#let straight = (
 size: 8,
 sharpness: 20deg,
 tip-origin: mark => 0.5/calc.sin(mark.sharpness),
 tail-origin: mark => -mark.size*calc.cos(mark.sharpness),
 fill: none,
 draw: mark => {
 draw.line(
 (180deg + mark.sharpness, mark.size), // polar cetz coordinate
 (0, 0),
 (180deg - mark.sharpness, mark.size),
)
 },
 cap-offset: (mark, y) => calc.tan(mark.sharpness + 90deg)*calc.abs(y),
)

#set align(center)
#fletcher.mark-debug(straight)
#fletcher.mark-demo(straight)

tip-end

tail-end

tip-origin

tail-origin

Custom mark shorthands
While you can pass custom mark objects directly to the marks option of edge(), this can get annoying
if you use the same mark often. In these cases, you can define your own mark shorthands.

Mark shorthands such as "hook->" search the state variable fletcher.MARKS for defined mark names.

#context fletcher.MARKS.get().at(">") (inherit: "head", rev: false)

With a bit of care, you can modify the MARKS state like so:

// this is what the default marks look like
#diagram(spacing: 3cm, edge("<->", stroke: 1.5pt))

#fletcher.MARKS.update(m => m + (
 "<": (inherit: "stealth", rev: true),
 ">": (inherit: "stealth", rev: false),
 "multi": (
 inherit: "straight",
 draw: mark => fletcher.cetz.draw.line(
 (0, +mark.size*calc.sin(mark.sharpness)),
 (-mark.size*calc.cos(mark.sharpness), 0),
 (0, -mark.size*calc.sin(mark.sharpness)),
),
)
))

// subsequent diagrams will use your updated marks
#diagram(spacing: 3cm, edge("multi->-multi", stroke: 1.5pt + eastern))

Here, we redefined which mark style the "<" and ">" shorthands refer to, and added an entirely new
mark style with the shorthand "multi".

Finally, I will restore the default state so as not to affect the rest of this manual:

#fletcher.MARKS.update(fletcher.DEFAULT_MARKS) // restore to built-in mark styles

11

CeTZ integration
Fletcher’s drawing capabilities are deliberately restricted to a few simple building blocks. However, an
escape hatch is provided with the render option of diagram() so you can intercept diagram data and
draw things using CeTZ directly.

Bézier edges
Here is an example of how you might hack together a Bézier edge using the same functions that
fletcher uses internally to anchor edges to nodes:

#diagram(
 node((0,1), A, stroke: 1pt, shape: fletcher.shapes.diamond),
 node((2,0), [Bézier], fill: purple.lighten(80%)),

 render: (grid, nodes, edges, options) => {
 // cetz is also exported as fletcher.cetz
 cetz.canvas({
 // this is the default code to render the diagram
 fletcher.draw-diagram(grid, nodes, edges, debug: options.debug)

 // retrieve node data by coordinates
 let n1 = fletcher.find-node-at(nodes, (0,1))
 let n2 = fletcher.find-node-at(nodes, (2,0))

 let out-angle = 45deg
 let in-angle = -110deg

 fletcher.get-node-anchor(n1, out-angle, p1 => {
 fletcher.get-node-anchor(n2, in-angle, p2 => {
 // make some control points
 let c1 = (to: p1, rel: (out-angle, 10mm))
 let c2 = (to: p2, rel: (in-angle, 20mm))
 cetz.draw.bezier(
 p1, p2, c1, c2,
 mark: (end: ">") // cetz-style mark
)
 })
 })

 })
 }
)

𝐴

Bézier

12

https://github.com/johannes-wolf/cetz
https://github.com/johannes-wolf/cetz

Touying integration
You can create incrementally-revealed diagrams in Touying presentation slides by defining the follow-
ing touying-reducer:

#import "@preview/touying:0.2.1": *
#let diagram = touying-reducer.with(reduce: fletcher.diagram, cover: fletcher.hide)
#let (init, slide) = utils.methods(s)
#show: init

#slide[
 Slide with animated figure:
 #diagram(
 node-stroke: .1em,
 node-fill: gradient.radial(blue.lighten(80%), blue,
 center: (30%, 20%), radius: 80%),
 spacing: 4em,
 edge((-1,0), "r", "-|>", `open(path)`, label-pos: 0, label-side: center),
 node((0,0), `reading`, radius: 2em),
 pause,
 edge((0,0), (0,0), `read()`, "--|>", bend: 130deg),
 edge(`read()`, "-|>"),
 node((1,0), `eof`, radius: 2em),
 pause,
 edge(`close()`, "-|>"),
 node((2,0), `closed`, radius: 2em, extrude: (-2.5, 0)),
 edge((0,0), (2,0), `close()`, "-|>", bend: -40deg),
)
]

13

https://github.com/touying-typ/touying
https://github.com/touying-typ/touying

Reference

Main functions

diagram()
Draw a diagram containing node()s and edge()s.

diagram(
 ..args: array ,
 debug: bool 1 2 3 ,
 axes: pair of directions ,
 spacing: length pair of lengths ,
 cell-size: length pair of lengths ,
 edge-stroke: stroke ,
 node-stroke: stroke none ,
 edge-corner-radius: length none ,
 node-corner-radius: length none ,
 node-inset: length pair of lengths ,
 node-outset: length pair of lengths ,
 node-fill: paint ,
 node-defocus: number ,
 label-sep: length ,
 mark-scale: percent ,
 crossing-fill: paint ,
 crossing-thickness: number ,
 render: function ,
)

..args array ↖

Content to draw in the diagram, including nodes and edges.

The results of node() and edge() can be joined, meaning you can specify them as separate argu-
ments, or in a block:

#diagram(
 // one object per argument
 node((0, 0), A),
 node((1, 0), B),
 {
 // multiple objects in a block
 // can use scripting, loops, etc
 node((2, 0), C)
 node((3, 0), D)
 },
 for x in range(4) { node((x, 1) [#x]) },
)

Nodes and edges can also be specified in math-mode.

#diagram($
 A & B \ // two nodes at (0,0) and (1,0)
 C edge(->) & D \ // an edge from (0,1) to (1,1)
 node(sqrt(pi), stroke: #1pt) // a node with options
$)

14

debug bool or 1 or 2 or 3 ↖

Level of detail for drawing debug information. Level 1 or true shows a coordinate grid; higher
levels show bounding boxes and anchors, etc.

Default: false

axes pair of directions ↖

The orientation of the diagram’s axes.

This defines the elastic coordinate system used by nodes and edges. To make the 𝑦 coordinate
increase up the page, use (ltr, btt). For the matrix convention (row, column), use (ttb, ltr).

(0, 0) (1, 0)

(1, 1)

axes: (ltr, ttb)

0 1

1

0

(0, 0) (1, 0)

(1, 1)

axes: (ltr, btt)

0 1

0

1 (0, 0)

(1, 0) (1, 1)

axes: (ttb, ltr)

0 1

1

0

Default: (ltr, ttb)

spacing length or pair of lengths ↖

Gaps between rows and columns. Ensures that nodes at adjacent grid points are at least this far
apart (measured as the space between their bounding boxes).

Separate horizontal/vertical gutters can be specified with (x, y). A single length d is short for
(d, d).

Default: 3em

cell-size length or pair of lengths ↖

Minimum size of all rows and columns. A single length d is short for (d, d).

Default: 0pt

edge-stroke stroke ↖

Default value of the stroke option of edge(). By default, this is chosen to match the thickness of
mathematical arrows such as 𝐴 → 𝐵 in the current font size.

The default stroke is folded with the stroke specified for the edge. For example, if edge-stroke is
1pt and the stroke option of edge() is red, then the resulting stroke is 1pt + red.

Default: 0.048em

15

node-stroke stroke or none ↖

Default value of the stroke option of node().

The default stroke is folded with the stroke specified for the node. For example, if node-stroke is
1pt and the stroke option of node() is red, then the resulting stroke is 1pt + red.

Default: none

edge-corner-radius length or none ↖

Default value of the corner-radius option of edge().

Default: 2.5pt

node-corner-radius length or none ↖

Default value of the corner-radius option of node().

Default: none

node-inset length or pair of lengths ↖

Default value of the inset option of node().

Default: 6pt

node-outset length or pair of lengths ↖

Default value of the outset option of node().

Default: 0pt

node-fill paint ↖

Default value of the fill option of node().

Default: none

node-defocus number ↖

Default value of the defocus option of node().

Default: 0.2

label-sep length ↖

Default value of the label-sep option of edge().

Default: 0.2em

16

mark-scale percent ↖

Default value of the mark-scale option of edge().

Default: 100%

crossing-fill paint ↖

Color to use behind connectors or labels to give the illusion of crossing over other objects. See the
crossing-fill option of edge().

Default: white

crossing-thickness number ↖

Default thickness of the occlusion made by crossing connectors. See crossing-thickness.

Default: 5

render function ↖

After the node sizes and grid layout have been determined, the render function is called with the
following arguments:
• grid: a dictionary of the row and column widths and positions;
• nodes: an array of nodes (dictionaries) with computed attributes (including size and physical

coordinates);
• edges: an array of connectors (dictionaries) in the diagram; and
• options: other diagram attributes.

This callback is exposed so you can access the above data and draw things directly with CeTZ.

Default: (grid, nodes, edges, options) => {
cetz.canvas(draw-diagram(grid, nodes, edges, debug: options.debug))
}

17

https://github.com/johannes-wolf/cetz

node()
Draw a labelled node in a diagram which can connect to edges.

node(
 ..args,
 pos: coordinate ,
 name: label none ,
 label: content ,
 inset: length auto ,
 outset: length auto ,
 fill: paint ,
 stroke: stroke ,
 extrude: array ,
 width: length auto ,
 height: length auto ,
 radius,
 enclose: array ,
 corner-radius: length ,
 shape: rect circle function auto ,
 defocus: number ,
 layer: number auto ,
 post: function ,
)

pos coordinate ↖

Dimensionless “elastic coordinates” (x, y) of the node.

See the options of diagram() to control the physical scale of elastic coordinates.

Default: auto

name label or none ↖

An optional name to give the node.

Names can sometimes be used in place of coordinates. For example:

fletcher.diagram(
 node((0,0), A, name: <A>),
 node((1,0.6), B, name:),
 edge(<A>, , "->"),
)

𝐴

𝐵

Note that you can also just use variables to refer to coordinates:

fletcher.diagram({
 let A = (0,0)
 let B = (1,0.6)
 node(A, A)
 node(B, B)
 edge(A, B, "->")
})

𝐴

𝐵

Default: none

18

label content ↖

Content to display inside the node.

If a node is larger than its label, you can wrap the label in align() to control the label alignment
within the node.

diagram(
 node((0,0), align(bottom + left)[¡Hola!],
 width: 3cm, height: 2cm, fill: yellow),
)

¡Hola!

Default: none

inset length or auto ↖

Padding between the node’s content and its outline.

In debug mode, the inset is visualised by a thin green outline.

diagram(
 debug: 3,
 node-stroke: 1pt,
 node((0,0), [Hello,]),
 edge(),
 node((1,0), [World!], inset: 10pt),
)

Hello, World!
0 1

0

(→, ↓)

Default: auto

outset length or auto ↖

Margin between the node’s bounds to the anchor points for connecting edges.

This does not affect node layout, only how closely edges connect to the node.

In debug mode, the outset is visualised by a thin green outline.

diagram(
 debug: 3,
 node-stroke: 1pt,
 node((0,0), [Hello,]),
 edge(),
 node((1,0), [World!], outset: 10pt),
)

Hello, World!
0 1

0

(→, ↓)

Default: auto

19

fill paint ↖

Fill style of the node. The fill is drawn within the node outline as defined by the first extrude value.

Defaults to the node-fill option of diagram().

Default: auto

stroke stroke ↖

Stroke style for the node outline.

Defaults to the node-stroke option of diagram().

Default: auto

extrude array ↖

Draw strokes around the node at the given offsets to obtain a multi-stroke effect. Offsets may be
numbers (specifying multiples of the stroke’s thickness) or lengths.

The node’s fill is drawn within the boundary defined by the first offset in the array.

(0,) (0, 2) (2, 0) (0, -2.5, 2mm)

See also the extrude option of edge().

Default: (0,)

width length or auto ↖

Width of the node. If auto, the node’s width is the width of the node label, plus twice the inset.

If the width is not auto, you can use align to control the placement of the node’s label.

Default: auto

height length or auto ↖

Height of the node. If auto, the node’s height is the height of the node label, plus twice the inset.

If the height is not auto, you can use align to control the placement of the node’s label.

Default: auto

enclose array ↖

Positions or names of other nodes to enclose by enlarging this node.

If given, causes the node to resize so that its bounding rectangle surrounds the given nodes. The
center pos does not affect the node’s position if enclose is given, but still affects connecting edges.

20

diagram(
 node-stroke: 1pt,
 node((0,0), [ABC], name: <A>),
 node((1,1), [XYZ], name: <Z>),
 node(
 text(teal)[Node group], stroke: teal,
 enclose: (<A>, <Z>), name: <group>),
 edge(<group>, (3,0.5), stroke: teal),
)

Node group

ABC

XYZ

Default: ()

corner-radius length ↖

Radius of rounded corners, if supported by the node shape.

Defaults to the node-corner-radius option of diagram().

Default: auto

shape rect or circle or function or auto ↖

Shape to draw for the node. If auto, one of rect or circle is chosen depending on the aspect ratio
of the node’s label.

Other shapes are defined in the fletcher.shapes submodule, including cetz, draw, vector,
rect, circle, ellipse, pill, parallelogram, diamond, triangle, house, chevron, hexagon, and
octagon.

Custom shapes should be specified as a function (node, extrude, ..parameters) => (..) which
returns cetz objects.
• The node argument is a dictionary containing the node’s attributes, including its dimensions

(node.size), and other options (such as node.corner-radius).
• The extrude argument is a length which the shape outline should be extruded outwards by. This

serves two functions: to support automatic edge anchoring with a non-zero node outset, and
to create multi-stroke effects using the extrude node option.

See the src/shapes.typ source file for examples.

Default: auto

defocus number ↖

Strength of the “defocus” adjustment for connectors incident with this node.

This affects how connectors attach to non-square nodes. If 0, the adjustment is disabled and con-
nectors are always directed at the node’s exact center.

21

defocus: 0.2 defocus: 0 defocus: −1

Defaults to the node-defocus option of diagram().

Default: auto

layer number or auto ↖

Layer on which to draw the node.

Objects on a higher layer are drawn on top of objects on a lower layer. Objects on the same layer
are drawn in the order they are passed to diagram().

By default, nodes are drawn on layer 0 unless they enclose points, in which case layer defaults
to -1.

Default: auto

post function ↖

Callback function to intercept cetz objects before they are drawn to the canvas.

This can be used to hide elements without affecting layout (for use with Touying, for example).
The hide() function also helps for this purpose.

Default: x => x

22

https://github.com/touying-typ/touying
https://github.com/touying-typ/touying

edge()
Draw a connecting line or arc in an arrow diagram.

edge(
 ..args: any ,
 vertices: array ,
 label: content ,
 label-side: left right center ,
 label-pos: number ,
 label-sep: length ,
 label-anchor: anchor ,
 label-fill: bool paint ,
 stroke: stroke ,
 dash: string ,
 decorations: none string function ,
 extrude: array ,
 shift: length number pair ,
 kind: string ,
 bend: angle ,
 corner: none left right ,
 corner-radius: length none ,
 marks: array ,
 mark-scale: percent ,
 crossing: bool ,
 crossing-thickness: number ,
 crossing-fill: paint ,
 snap-to: pair ,
 layer: number ,
 post: function ,
)

..args any ↖

An edge’s positional arguments may specify:
• the edge’s vertices
• the label content
• marks and other style options

Vertex coordinates must come first, and are optional:

edge(from, to, ..) // explicit start and end nodes
edge(to, ..) // start node chosen automatically based on last node specified
edge(..) // both nodes chosen automatically depending on adjacent nodes
edge(from, v1, v2, ..vs, to, ..) // a multi-segmented edge

All coordinates except the start point can be relative (a dictionary of the form (rel: (Δx, Δy))
or a string containing the characters {l, r, u, d, t, b, n, e, s, w}).

An edge’s marks and label can be also be specified as positional arguments. They are disam-
biguated by guessing based on the types. For example, the following are equivalent:

edge((0,0), (1,0), f, "->")
edge((0,0), (1,0), "->", f)
edge((0,0), (1,0), f, marks: "->")
edge((0,0), (1,0), "->", label: f)
edge((0,0), (1,0), label: f, marks: "->")

23

Additionally, some common options are given flags that may be given as string positional argu-
ments. These are "dashed", "dotted", "double", "triple", "crossing", "wave", "zigzag", and
"coil". For example, the following are equivalent:

edge((0,0), (1,0), f, "wave", "crossing")
edge((0,0), (1,0), f, decorations: "wave", crossing: true)

vertices array ↖

Array of (at least two) coordinates for the edge.

Vertices can also be specified as leading positional arguments, but if so, the vertices option must
be empty. If the number of vertices is greater than two, kind defaults to "poly".

Default: ()

label content ↖

Content for the edge label. See the label-pos and label-side options to control the position (and
label-sep and label-anchor for finer control).

Default: none

label-side left or right or center ↖

Which side of the edge to place the label on, viewed as you walk along it from base to tip.

If center, then the label is placed directly on the edge and label-fill defaults to true. When
auto, a value of left or right is automatically chosen so that the label is:
• roughly above the connector, in the case of straight lines; or
• on the outside of the curve, in the case of arcs.

Default: auto

label-pos number ↖

Position of the label along the connector, from the start to end (from 0 to 1).

0 0.25 0.5 0.75 1

Default: 0.5

label-sep length ↖

Separation between the connector and the label anchor.

With the default anchor (automatically set to "bottom" in this case):

24

-5pt 0pt 0.4em 0.8em

0 1 2 3 4 5 6 7

0

(→, ↓)

With label-anchor set to "center":

-5pt 0pt 0.4em 0.8em

0 1 2 3 4 5 6 7

0

(→, ↓)

Set debug to 2 or higher to see label anchors and outlines as seen here.

Default: auto

label-anchor anchor ↖

The anchor point to place the label at, such as "top-right", "center", "bottom", etc. If auto, the
anchor is automatically chosen based on label-side and the angle of the connector.

Default: auto

label-fill bool or paint ↖

The background fill for the label. If true, defaults to the value of crossing-fill. If false or none,
no fill is used. If auto, then defaults to true if the label is covering the edge (label-side: center).

Default: auto

stroke stroke ↖

Stroke style of the edge. Arrows/marks scale with the stroke thickness (and with mark-scale).

Default: auto

dash string ↖

The stroke’s dash style. This is also set by some mark styles. For example, setting marks: "<..>"
applies dash: "dotted".

Default: none

25

decorations none or string or function ↖

Apply a CeTZ path decoration to the stroke. Preset options are "wave", "zigzag", and
"coil" (which may also be passed as convenience positional arguments), but a decoration func-
tion may also be specified.

diagram(
 $
 A edge("wave") &
 B edge("zigzag") &
 C edge("coil") & D \
 alpha &&& omega
 $,
 edge((0,1), (3,1), "<->", decorations:
 cetz.decorations.wave
 .with(amplitude: .4)
)
)

𝐴 𝐵 𝐶 𝐷

𝛼 𝜔

Default: none

extrude array ↖

Draw a separate stroke for each extrusion offset to obtain a multi-stroke effect. Offsets may be
numbers (specifying multiples of the stroke’s thickness) or lengths.

(0,) (-1.5, 1.5) (-2, 0, 2) (-0.5em,) (0, 5pt)

Notice how the ends of the line need to shift a little depending on the mark. This offset is computed
with cap-offset().

See also the extrude option of node().

Default: (0,)

shift length or number or pair ↖

Amount to shift the edge sideways by, perpendicular to its direction. A pair (from, to) controls
the shifts at each end of the edge independently, and a single shift s is short for (s, s). Shifts can
absolute lengths (e.g., 5pt) or coordinate differences (e.g., 0.1).

3pt

-3pt
𝐴 𝐵

If an edge has many vertices, the shifts only affect the first and last segments of the edge.

diagram(
 node-fill: luma(70%),
 node((0,0), [Hello]),
 edge("u,r,d", "->"),
 edge("u,r,d", "-->", shift: 8pt),

26

https://github.com/johannes-wolf/cetz

 node((1,0), [World]),
)

Hello World

Default: 0pt

kind string ↖

The kind of the edge, one of "line", "arc", or "poly". This is chosen automatically based on the
presence of other options (bend implies "arc", corner or additional vertices implies "poly").

Default: auto

bend angle ↖

Edge curvature. If 0deg, the connector is a straight line; positive angles bend clockwise.

-100deg

-50deg

0deg

50deg

100deg

𝐴

𝐵

Default: 0deg

corner none or left or right ↖

Whether to create a right-angled corner, turning left or right. (Bending right means the corner
sticks out to the left, and vice versa.)

right

left
from

to

Default: none

corner-radius length or none ↖

Radius of rounded corners for edges with multiple segments. Note that none is distinct from 0pt.

27

none 0pt 5pt

This length specifies the corner radius for right-angled bends. The actual radius is smaller for acute
angles and larger for obtuse angles to balance things visually. (Trust me, it looks naff otherwise!)

If auto, defaults to the edge-corner-radius option of diagram().

Default: auto

marks array ↖

The marks (arrowheads) to draw along an edge’s stroke. This may be:

• A shorthand string such as "->" or "hook'-/->>". Specifically, shorthand strings are of the form
𝑀1𝐿𝑀2 or 𝑀1𝐿𝑀2𝐿𝑀3, etc, where

𝑀𝑖 ∈ fletcher.MARKS =

⎩
{{
{{
{{
⎨
{{
{{
{{
⎧ head,

solid,
square,
hooks,
>>>,
<{,
\,
*,

doublehead,
stealth,
diamond,

>,
<<<,
|,
x,
@,

triplehead,
latex,
bar,
<,
|>,
||,
X,
[],

harpoon,
cone,
cross,
>>,
<|,
|||,
o,
<>,

straight,
circle,
hook,
<<,
}>,
/,
O,

⎭
}}
}}
}}
⎬
}}
}}
}}
⎫

is a mark name and

𝐿 ∈ fletcher.LINE_ALIASES = {-, =, ==, --, .., ~}

is the line style.

• An array of marks, where each mark is specified by name of as a mark object (dictionary of
parameters with a draw entry).

Shorthands are expanded into other arguments. For example, edge(p1, p2, "=>") is short for
edge(p1, p2, marks: (none, "head"), "double"), or more precisely, the result of edge(p1,
p2, ..fletcher.interpret-marks-arg("=>")).

Result Value of marks
"->"

">>-->"

"<=>"

"==>"

"->>-"

"x-/-@"

"|..|"

"hook->>"

28

"hook'->>"

"||-*-harpoon'"

("X", (inherit: "head", size: 15, sharpness: 40deg))

((inherit: "circle", pos: 0.5, fill: auto),)

Default: ()

mark-scale percent ↖

Scale factor for marks or arrowheads, relative to the stroke thickness. See also the mark-scale
option of diagram().

100% 150% 200%

Note that the default arrowheads scale automatically with double and triple strokes:

-> => ==>

Default: 100%

crossing bool ↖

If true, draws a backdrop of color crossing-fill to give the illusion of lines crossing each other.

You can also pass "crossing" as a positional argument as a shorthand for crossing: true.

Default: false

crossing-thickness number ↖

Thickness of the “crossing” background stroke (applicable if crossing is true) in multiples of the
normal stroke’s thickness. Defaults to the crossing-thickness option of diagram().

11 22 44 88

Default: auto

29

crossing-fill paint ↖

Color to use behind connectors or labels to give the illusion of crossing over other objects. Defaults
to crossing-fill.

𝑓𝑓 𝑓𝑓

Default: auto

snap-to pair ↖

The nodes the start and end of an edge should snap to. Each node can be a position or node name,
or none to disable snapping.

By default, an edge’s first and last vertices snap to nearby nodes. This option can be used in case
automatic snapping fails (if there are many nodes close together, for example.)

Default: (auto, auto)

layer number ↖

Layer on which to draw the edge.

Objects on a higher layer are drawn on top of objects on a lower layer. Objects on the same layer
are drawn in the order they are passed to diagram().

Default: 0

post function ↖

Callback function to intercept cetz objects before they are drawn to the canvas.

This can be used to hide elements without affecting layout (for use with Touying, for example).
The hide() function also helps for this purpose.

Default: x => x

Behind the scenes

marks.typ
The default marks are defined in the fletcher.MARKS dictionary with keys: head, doublehead,
triplehead, harpoon, straight, solid, stealth, latex, cone, circle, square, diamond, bar, cross,
hook, hooks, >, <, >>, <<, >>>, <<<, |>, <|, }>, <{, |, ||, |||, /, \, x, X, o, O, *, @, [], and <>.

30

https://github.com/touying-typ/touying
https://github.com/touying-typ/touying

• cap-offset()
• resolve-mark()
• draw-mark()
• mark-debug()

cap-offset()
For a given mark, determine where that the stroke should terminate at, relative to the mark’s origin
point, as a function of the shift.

Imagine the tip-origin of the mark is at (𝑥, 𝑦) = (0, 0). A stroke along the line 𝑦 = shift coming from
𝑥 = −∞ terminates at 𝑥 = offset, where offset is the result of this function. Units are in multiples of
stroke thickness.

This is used to correctly implement multi-stroke marks, e.g., . The function mark-debug() can
help visualise a mark’s cap offset.

fletcher.mark-debug("O")
tip-end

tail-end

tip-origin

tail-origin

The dashed green line shows the stroke tip end as a function of 𝑦, and the dashed red line shows where
the stroke ends if the mark is acting as a tail.

cap-offset(mark, shift)

resolve-mark()
Resolve a mark dictionary by applying inheritance, adding any required entries, and evaluating any
closure entries.

context fletcher.resolve-mark((
 a: 1,
 b: 2,
 c: mark => mark.a + mark.b,
))

(
 a: 1,
 b: 2,
 c: 3,
 rev: false,
 flip: false,
 scale: 100%,
 extrude: (0,),
 tip-end: 0,
 tail-end: 0,
 tip-origin: 0,
 tail-origin: 0,
)

resolve-mark(mark, defaults)

31

draw-mark()
Draw a mark at a given position and angle

draw-mark(
 mark: dictionary ,
 stroke: stroke ,
 origin: point ,
 angle: angle ,
 debug: bool ,
)

mark dictionary ↖

Mark object to draw. Must contain a draw entry.

stroke stroke ↖

Stroke style for the mark. The stroke’s paint is used as the default fill style.

Default: 1pt

origin point ↖

Coordinate of the mark’s origin (as defined by tip-origin or tail-origin).

Default: (0,0)

angle angle ↖

Angle of the mark, 0deg being →, counterclockwise.

Default: 0deg

debug bool ↖

Whether to draw the origin points.

Default: false

32

mark-debug()
Visualise a mark’s anatomy.

context {
 let mark = fletcher.MARKS.get().stealth
 // make a wide stealth arrow
 mark += (angle: 45deg)
 fletcher.mark-debug(mark)
}

tip-end

tail-end

tip-origin

tail-origin

• Green/left stroke: the edge’s stroke when the mark is at the tip.
• Red/right stroke: edge’s stroke if the mark is at the start acting as a tail.
• Blue-white dot: the origin point (0, 0) in the mark’s coordinate frame.
• tip-origin: the 𝑥-coordinate of the point of the mark’s tip.
• tail-origin: the 𝑥-coordinate of the mark’s tip when it is acting as a reversed tail mark.
• tip-end: The 𝑥-coordinate of the end point of the edge’s stroke (green stroke).
• tail-end: The 𝑥-coordinate of the end point of the edge’s stroke when acting as a tail mark (red

stroke).
• Dashed green/red lines: The stroke end points as a function of 𝑦. This is controlled by the special
cap-offset mark property and is used for multi-stroke effects like . See cap-offset().

This is mainly useful for designing your own marks.

mark-debug(
 mark: string dictionary ,
 stroke: stroke ,
 show-labels: bool ,
 show-offsets: bool ,
 offset-range: number ,
)

mark string or dictionary ↖

The mark name or dictionary.

stroke stroke ↖

The stroke style, whose paint and thickness applies both to the stroke and the mark itself.

Default: 5pt

show-labels bool ↖

Whether to label the tip/tail origin/end points.

Default: true

33

show-offsets bool ↖

Whether to visualise the cap-offset() values.

Default: true

offset-range number ↖

The span above and below the stroke line to plot the cap offsets, in multiples of the stroke’s thick-
ness.

Default: 6

shapes.typ
To use built-in shapes in a diagram, import them with:

#import fletcher: shapes
#diagram(node([Hello], stroke: 1pt, shape: shapes.hexagon))

or:

#import fletcher.shapes: hexagon
#diagram(node([Hello], stroke: 1pt, shape: hexagon))

To set a shape parameter, use shape.with(..), for example hexagon.with(angle: 45deg).

• rect()
• circle()
• ellipse()
• pill()
• parallelogram()
• diamond()
• triangle()
• house()
• chevron()
• hexagon()
• octagon()

rect()
The standard rectangle node shape.

A string "rect" or the element function rect given to the shape option of node() are interpreted as
this shape.

rect

rect(node, extrude)

34

circle()
The standard circle node shape.

A string "circle" or the element function circle given to the shape option of node() are interpreted
as this shape.

circle

circle(node, extrude)

ellipse()
An elliptical node shape.

ellipse

ellipse(
 node,
 extrude,
 scale: number ,
)

scale number ↖

Scale factor for ellipse radii.

Default: 1

pill()
A capsule node shape.

pill

pill(node, extrude)

parallelogram()
A slanted rectangle node shape.

parallelogram

parallelogram(
 node,
 extrude,
 angle: angle ,
 fit: number ,
)

35

angle angle ↖

Angle of the slant, 0deg is a rectangle. Don’t set to 90deg unless you want your document to be
larger than the solar system.

Default: 20deg

fit number ↖

Adjusts how comfortably the parallelogram fits the label.

fit: 0 fit: 0.5 fit: 1

Default: 0.8

diamond()
A rhombus node shape.

diamond

diamond(
 node,
 extrude,
 fit: number ,
)

fit number ↖

Adjusts how comfortably the diamond fits the label.

fit: 0
fit: 0.5

fit: 1

Default: 0.5

36

triangle()
An isosceles triangle node shape.

One of angle or aspect may be given, but not both. The triangle’s base coincides with the label’s base
and widens to enclose the label; see https://www.desmos.com/calculator/i4i9svunj4.

triangle

triangle(
 node,
 extrude,
 dir: top bottom left right ,
 angle: angle auto ,
 aspect: number auto ,
 fit: number ,
)

dir top or bottom or left or right ↖

Direction the triangle points.

Default: top

angle angle or auto ↖

Angle of the triangle opposite the base.

Default: auto

aspect number or auto ↖

Aspect ratio of triangle, or the ratio of its base to its height.

Default: auto

fit number ↖

Adjusts how comfortably the triangle fits the label.

fit: 0 fit: 0.5 fit: 1

Default: 0.8

37

https://www.desmos.com/calculator/i4i9svunj4

house()
A pentagonal house-like node shape.

house

house(
 node,
 extrude,
 dir: top bottom left right ,
 angle: angle ,
)

dir top or bottom or left or right ↖

Direction of the roof of the house.

Default: top

angle angle ↖

The slant of the roof. Set to 0deg for a rectangle, and to 90deg for a document stretching past Pluto.

Default: 10deg

chevron()
A chevron node shape.

chevron

chevron(
 node,
 extrude,
 dir: top bottom left right ,
 angle: angle ,
 fit: number ,
)

dir top or bottom or left or right ↖

Direction the chevron points.

Default: right

angle angle ↖

The slant of the roof. Set to 0deg for a rectangle, and to 90deg for a document stretching past Pluto.

Default: 30deg

38

fit number ↖

Adjusts how comfortably the chevron fits the label.

fit: 0 fit: 0.5 fit: 1

Default: 0.8

hexagon()
An (irregular) hexagon node shape.

hexagon

hexagon(
 node,
 extrude,
 angle: angle ,
 fit: number ,
)

angle angle ↖

Half the exterior angle, 0deg being a rectangle.

Default: 30deg

fit number ↖

Adjusts how comfortably the hexagon fits the label.

fit: 0 fit: 0.5 fit: 1

Default: 0.8

octagon()
A truncated rectangle node shape.

octagon

octagon(
 node,
 extrude,
 truncate: number length ,
)

39

truncate number or length ↖

Size of the truncated corners. A number is interpreted as a multiple of the smaller of the node’s
width or height.

Default: 0.5

coords.typ
• uv-to-xy()
• xy-to-uv()
• duv-to-dxy()
• dxy-to-duv()
• vector-polar-with-xy-or-uv-length()
• resolve-label-coordinate()
• resolve-relative-coordinates()

uv-to-xy()
Convert from elastic to absolute coordinates, (𝑢, 𝑣) ↦ (𝑥, 𝑦).

Elastic coordinates are specific to the diagram and adapt to row/column sizes; absolute coordinates are
the final, physical lengths which are passed to cetz.

uv-to-xy(grid: dictionary , uv: array)

grid dictionary ↖

Representation of the grid layout, including:
• origin
• centers
• spacing
• flip

The grid is passed to the render option of diagram().

uv array ↖

Elastic coordinate, (float, float).

xy-to-uv()
Convert from absolute to elastic coordinates, (𝑥, 𝑦) ↦ (𝑢, 𝑣).

Inverse of uv-to-xy().

xy-to-uv(grid, xy)

40

duv-to-dxy()
Jacobian of the coordinate map uv-to-xy().

Used to convert a “nudge” in 𝑢𝑣 coordinates to a “nudge” in 𝑥𝑦 coordinates. This is needed because 𝑢𝑣
coordinates are non-linear (they’re elastic). Uses a balanced finite differences approximation.

duv-to-dxy(
 grid: dictionary ,
 uv: array ,
 duv: array ,
)

grid dictionary ↖

Representation of the grid layout. The grid is passed to the render option of diagram().

uv array ↖

The point (float, float) in the 𝑢𝑣-manifold where the shift tangent vector is rooted.

duv array ↖

The shift tangent vector (float, float) in 𝑢𝑣 coordinates.

dxy-to-duv()
Jacobian of the coordinate map xy-to-uv().

dxy-to-duv(
 grid,
 xy,
 dxy,
)

vector-polar-with-xy-or-uv-length()
Return a vector in 𝑥𝑦 coordinates with a given angle 𝜃 in 𝑥𝑦-space but with a length specified in either
𝑥𝑦-space or 𝑢𝑣-space.

vector-polar-with-xy-or-uv-length(
 grid,
 xy,
 target-length,
 θ,
)

41

resolve-label-coordinate()
Convert labels into the coordinates of a node with that label, leaving anything else unchanged.

resolve-label-coordinate(nodes, coord)

resolve-relative-coordinates()
Given a sequence of coordinates of the form (x, y) or (rel: (Δx, Δy)), return a sequence in the form
(x, y) where relative coordinates are applied relative to the previous coordinate in the sequence.

The first coordinate must be of the form (x, y).

resolve-relative-coordinates(coords)

layout.typ
• compute-node-sizes()
• compute-node-enclosures()
• expand-fractional-rects()
• interpret-axes()
• compute-cell-sizes()
• compute-cell-centers()
• compute-grid()
• apply-edge-shift()

compute-node-sizes()
Measure node labels with the style context and resolve node shapes.

Widths and heights that are auto are determined by measuring the size of the node’s label.

compute-node-sizes(nodes, styles)

compute-node-enclosures()
Process the enclose options of an array of nodes.

compute-node-enclosures(nodes, grid)

42

expand-fractional-rects()
Convert an array of rects (center: (x, y), size: (w, h)) with fractional positions into rects with
integral positions.

If a rect is centered at a factional position floor(x) < x < ceil(x), it will be replaced by two new
rects centered at floor(x) and ceil(x). The total width of the original rect is split across the two new
rects according two which one is closer. (E.g., if the original rect is at x = 0.25, the new rect at x = 0
has 75% the original width and the rect at x = 1 has 25%.) The same splitting procedure is done for y
positions and heights.

expand-fractional-rects(rects: array) -> array

rects array ↖

An array of rects of the form (center: (x, y), size:
 (width, height)). The coordinates x and y may be floats.

interpret-axes()
Interpret the axes option of diagram().

Returns a dictionary with:
• x: Whether 𝑢 is reversed
• y: Whether 𝑣 is reversed
• xy: Whether the axes are swapped

interpret-axes(axes: array) -> dictionary

axes array ↖

Pair of directions specifying the interpretation of (𝑢, 𝑣) coordinates. For example, (ltr, ttb)
means 𝑢 goes → and 𝑣 goes ↓.

compute-cell-sizes()
Determine the number and sizes of grid cells needed for a diagram with the given nodes and edges.

Returns a dictionary with:
• origin: (u-min, v-min) Coordinate at the grid corner where elastic/uv coordinates are minimised.
• cell-sizes: (x-sizes, y-sizes) Lengths and widths of each row and column.

compute-cell-sizes(
 grid: dictionary ,
 nodes,
 edges,
)

43

grid dictionary ↖

Representation of the grid layout, including:
• flip

compute-cell-centers()
Determine the centers of grid cells from their sizes and spacing between them.

Returns the a dictionary with:
• centers: (x-centers, y-centers) Positions of each row and column, measured from the corner

of the bounding box.
• bounding-size: (x-size, y-size) Dimensions of the bounding box.

compute-cell-centers(grid: dictionary) -> dictionary

grid dictionary ↖

Representation of the grid layout, including:
• cell-sizes: (x-sizes, y-sizes) Lengths and widths of each row and column.
• spacing: (x-spacing, y-spacing) Gap to leave between cells.

compute-grid()
Determine the number, sizes and relative positions of rows and columns in the diagram’s coordinate
grid.

Rows and columns are sized to fit nodes. Coordinates are not required to start at the origin, (0,0).

compute-grid(
 nodes,
 edges,
 options,
)

apply-edge-shift()
Apply the shift option of edge() by translating edge vertices.

apply-edge-shift(grid: dictionary , edge: dictionary)

grid dictionary ↖

Representation of the grid layout. This is needed to support shifts specified as coordinate lengths.

edge dictionary ↖

The edge with a shift entry.

44

draw.typ
• draw-edge-line()
• draw-edge-arc()
• draw-edge-polyline()
• find-farthest-intersection()
• get-node-anchor()
• defocus-adjustment()
• draw-debug-axes()
• hide()

draw-edge-line()
Draw a straight edge.

draw-edge-line(edge: dictionary , debug: int)

edge dictionary ↖

The edge object, a dictionary, containing:
• vertices: an array of two points, the line’s start and end points.
• extrude: An array of extrusion lengths to apply a multi-stroke effect with.
• stroke: The stroke style.
• marks: An array of marks to draw along the edge.
• label: Content for label.
• label-side, label-pos, label-sep, and label-anchor.

debug int ↖

Level of debug details to draw.

Default: 0

draw-edge-arc()
Draw a bent edge.

draw-edge-arc(edge: dictionary , debug: int)

edge dictionary ↖

The edge object, a dictionary, containing:
• vertices: an array of two points, the arc’s start and end points.
• bend: The angle of the arc.
• extrude: An array of extrusion lengths to apply a multi-stroke effect with.
• stroke: The stroke style.
• marks: An array of marks to draw along the edge.
• label: Content for label.
• label-side, label-pos, label-sep, and label-anchor.

45

debug int ↖

Level of debug details to draw.

Default: 0

draw-edge-polyline()
Draw a multi-segment edge

draw-edge-polyline(edge: dictionary , debug: int)

edge dictionary ↖

The edge object, a dictionary, containing:
• vertices: an array of at least two points to draw segments between.
• corner-radius: Radius of curvature between segments.
• extrude: An array of extrusion lengths to apply a multi-stroke effect with.
• stroke: The stroke style.
• marks: An array of marks to draw along the edge.
• label: Content for label.
• label-side, label-pos, label-sep, and label-anchor.

debug int ↖

Level of debug details to draw.

Default: 0

find-farthest-intersection()
Of all the intersection points within a set of CeTZ objects, find the one which is farthest from a target
point and pass it to a callback.

If no intersection points are found, use the target point itself.

find-farthest-intersection(
 objects: cetz array none ,
 target: point ,
 callback,
)

objects cetz array or none ↖

Objects to search within for intersections. If none, callback is immediately called with target.

46

https://github.com/johannes-wolf/cetz

target point ↖

Target point to sort intersections by proximity with, and to use as a fallback if no intersections
are found.

get-node-anchor()
Get the anchor point around a node outline at a certain angle.

get-node-anchor(
 node,
 θ,
 callback,
)

defocus-adjustment()
Return the anchor point for an edge connecting to a node with the “defocus” adjustment.

Basically, for very long/wide nodes, don’t make edges coming in from all angles go to the exact node
center, but “spread them out” a bit.

See https://www.desmos.com/calculator/irt0mvixky.

defocus-adjustment(node, θ)

draw-debug-axes()
Draw diagram coordinate axes.

draw-debug-axes(grid: dictionary , debug)

grid dictionary ↖

Dictionary specifying the diagram’s grid, containing:
• origin: (u-min, v-min), the minimum values of elastic coordinates,
• flip: (x, y, xy), the axes orientation (see interpret-axes()),
• centers: (x-centers, y-centers), the physical offsets of each row and each column,
• cell-sizes: (x-sizes, y-sizes), the physical sizes of each row and each column.

47

https://www.desmos.com/calculator/irt0mvixky

hide()
Make diagram contents invisible, with or without affecting layout. Works by wrapping final drawing
objects in cetz.draw.hide.

rect(diagram({
 fletcher.hide({
 node((0,0), [Can't see me])
 edge("->")
 })
 node((1,1), [Can see me])
})) Can see me

hide(objects: content array , bounds: bool)

objects content or array ↖

Diagram objects to hide.

bounds bool ↖

If false, layout is as if the objects were never there; if true, the layout treats the objects is present
but invisible.

Default: true

utils.typ
• interp()
• interp-inv()
• get-arc-connecting-points()
• is-space()

interp()
Linearly interpolate an array with linear behaviour outside bounds

interp(
 values: array ,
 index: int float ,
 spacing: length ,
)

values array ↖

Array of lengths defining interpolation function.

index int or float ↖

Index-coordinate to sample.

48

spacing length ↖

Gradient for linear extrapolation beyond array bounds.

Default: 0pt

interp-inv()
Inverse of interp().

interp-inv(
 values: array ,
 value,
 spacing: length ,
)

values array ↖

Array of lengths defining interpolation function.
• value: Value to find the interpolated index of.

spacing length ↖

Gradient for linear extrapolation beyond array bounds.

Default: 0pt

get-arc-connecting-points()
Determine arc between two points with a given bend angle

The bend angle is the angle between chord of the arc (line connecting the points) and the tangent to
the arc and the first point.

Returns a dictionary containing:
• center: the center of the arc’s curvature
• radius
• start: the start angle of the arc
• stop: the end angle of the arc

get-arc-connecting-points(
 from: point ,
 to: point ,
 angle: angle ,
) -> dictionary

from point ↖

2D vector of initial point.

49

to point ↖

2D vector of final point.

angle angle ↖

The bend angle between chord of the arc (line connecting the points) and the tangent to the arc
and the first point.

0deg 45deg -90deg

is-space()
Return true if a content element is a space or sequence of spaces

is-space(el)

50

	Usage examples
	Diagrams
	Elastic coordinates
	Fractional coordinates

	Nodes
	Node shapes
	Node groups

	Edges
	Specifying edge vertices
	Implicit coordinates
	Relative coordinates
	Named or labelled coordinates

	Edge types
	Tweaking where edges connect

	Marks and arrows
	Custom marks
	Mark objects
	Special mark properties
	Detailed example

	Custom mark shorthands

	CeTZ integration
	Bézier edges

	Touying integration
	Main functions
	diagram()
	node()
	edge()

	Behind the scenes
	marks.typ
	cap-offset()
	resolve-mark()
	draw-mark()
	mark-debug()

	shapes.typ
	rect()
	circle()
	ellipse()
	pill()
	parallelogram()
	diamond()
	triangle()
	house()
	chevron()
	hexagon()
	octagon()

	coords.typ
	uv-to-xy()
	xy-to-uv()
	duv-to-dxy()
	dxy-to-duv()
	vector-polar-with-xy-or-uv-length()
	resolve-label-coordinate()
	resolve-relative-coordinates()

	layout.typ
	compute-node-sizes()
	compute-node-enclosures()
	expand-fractional-rects()
	interpret-axes()
	compute-cell-sizes()
	compute-cell-centers()
	compute-grid()
	apply-edge-shift()

	draw.typ
	draw-edge-line()
	draw-edge-arc()
	draw-edge-polyline()
	find-farthest-intersection()
	get-node-anchor()
	defocus-adjustment()
	draw-debug-axes()
	hide()

	utils.typ
	interp()
	interp-inv()
	get-arc-connecting-points()
	is-space()

